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Resultant polytopes

> Algebra: generalization of the resultant polynomial degree
» Geometry: Minkowski summands of secondary polytopes

» Applications: support computation — discriminant and resultant
computation
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Polytopes and Algebra

» Given n + 1 polynomials on n variables.
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Polytopes and Algebra

» Given n + 1 polynomials on n variables.

» Supports (set of exponents of monomials with non-zero coefficient)
Aoy Ay An CZM.

» The resultant R is the polynomial in the coefficients of a system of
polynomials which vanishes if there exists a common root in the
torus of the given polynomials.
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Polytopes and Algebra

» Given n + 1 polynomials on n variables.

» Supports (set of exponents of monomials with non-zero coefficient)
Aoy Ay An CZM.

» The resultant R is the polynomial in the coefficients of a system of
polynomials which vanishes if there exists a common root in the
torus of the given polynomials.

» The resultant polytope N(R), is the convex hull of the support of R,
i.e. the Newton polytope of the resultant.

fo(l’):a$2+b AO — — — — e
filx) =cx® +dr+e Ay . e

R(a,b,c,d,e) = ad®b + c*b*> — 2caeb + a’e*  N(R) I>-



Polytopes and Algebra

The case of linear polynomials

folz,y) =ax+by+c Ao I\:.

file.) = d + ey + f At

fa(z,y) = g+ hy +i YN
abc

R(a,b,c,d,e, f,g9,h,i) = |de f N(R)
ghai

4-dimensional Birkhoff polytope



Polytopes and Algebra

folz,y) = azy® + 2y +c A S
‘-

filz,y) =dx +ey A

folx,y) = go* + hy + 1 A Tl

Q: How N(R) looks like in the general case



Resultant polytopes: Motivation

> Algebra: useful to express the solvability of polynomial systems,
generalizes the notion of the degree of the resultant

» Geometry: Minkowski summands of secondary polytopes, equival.
classes of secondary vertices, generalize Birkhoff polytopes

» Applications: support computation — discriminant and resultant
computation, implicitization of parametric hypersurfaces
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» [GKZ'90] Univariate case / general dimensional N(R)



Existing work

» [GKZ'90] Univariate case / general dimensional N(R)

> [Sturmfels’94] Multivariate case / up to 3 dimensional N(R
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One step beyond... 4-dimensional N(R)

» Polytope P C R*: f-vector is the vector of its face cardinalities.
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One step beyond... 4-dimensional N(R)

> Polytope P C R*: f-vector is the vector of its face cardinalities.
» Call vertices, edges, ridges, facets, the 0,1,2,3-d, resp., faces of P.

> f-vectors of 4-dimensional N(R)

(5, 10, 10, 5) (18, 53, 53, 18)
(6, 15, 18, 9) (18, 54, 54, 18)
(8, 20, 21, 9) (19, 54, 52, 17)
(9, 22, 21, 8) (19, 55, 51, 15)
. (19, 55, 52, 16)

(19, 55, 54, 18)
: (19, 56, 54, 17)
(17, 49, 48, 16) (19, 56, 56, 19)
(17, 49, 49, 17) (19, 57, 57, 19)
(17, 50, 50, 17) (20, 58, 54, 16)
(18, 51, 48, 15) (20, 59, 57, 18)
(18, 51, 49, 16) (20, 60, 60, 20)
(18, 52, 50, 16) (21, 62, 60, 19)
(18, 52, 51, 17) (21, 63, 63, 21)
(18, 53, 51, 16) (22, 66, 66, 22)



Computation of resultant polytopes

» respol software [Emiris-F-Konaxis-Pefiaranda '12]

> lower bounds
» C++, CGAL (Computational Geometry Algorithms Library)

> http://sourceforge.net/projects/respol



Computation of resultant polytopes

» respol software [Emiris-F-Konaxis-Pefiaranda '12]

> lower bounds
» C++, CGAL (Computational Geometry Algorithms Library)
> http://sourceforge.net/projects/respol

> Alternative algorithm that utilizes tropical geometry (GFan library)
[Jensen-Yu '11]
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Main result

Theorem
Given Ao, A1y...,An C Z™ with N(R) of dimension 4. Then N(R) are
degenerations of the polytopes in following cases.

(i) All'|Ai]l =2, except for one with cardinality 5, is a 4-simplex with
f-vector (5,10,10,5).

(ii) All'|Ai] =2, except for two with cardinalities 3 and 4, has f-vector
(10,26,25,9).

(iii) All |Ai| = 2, except for three with cardinality 3, maximal number of
ridges is fz = 66 and of facets f3 = 22. Moreover, 22 < fo < 28,
and 66 < f1 < 72. The lower bounds are tight.

» Degenarations can only decrease the number of faces.
» Focus on new case (iii), which reduces to n = 2 and each |A;| = 3.

> Previous upper bound for vertices yields 6608 [Sturmfels’'94].



Tool (1): N(R) faces and subdivisions

A subdivision S of Ag + Aj + -+ Ay is mixed when its cells have
expressions as Minkowski sums of convex hulls of point subsets in Aj's.

Example
A

o
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N mixed subdivision S of Ay + A; + Ay



Tool (1): N(R) faces and subdivisions

A subdivision S of Ag + Aj + -+ Ay is mixed when its cells have
expressions as Minkowski sums of convex hulls of point subsets in Aj's.

Example
Ay :

Ay
N mixed subdivision S of Ay + A; + Ay

Proposition (Sturmfels'94)

A regular mixed subdivision S of Ag + A1 + -+ -+ A, corresponds to a
face of N(R) which is the Minkowski sum of the resultant polytopes of
the cells (subsystems) of S.
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Tool (1): N(R) faces and subdivisions

Example

» white, blue, red cells — N(R) vertex

» purple cell - N(R) segment

subd. S of Ay + Ay + Ay Mink. sum of N(R) triangle and N(R) segment



Tool (1): N(R) faces and subdivisions

Example

» white, blue, red cells — N(R) vertex
» purple cell - N(R) segment
» turquoise cell — N(R) triangle

Wl
& I~
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subd. S of Ay + Ay + Ay Mink. sum of N(R) triangle and N(R) segment




Tool (2): Input genericity
Proposition

Input genericity maximizes the number of resultant polytope faces.
Proof idea

SR

N(R) f-vector: (14,38,36,12)
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Tool (2): Input genericity
Proposition

Input genericity maximizes the number of resultant polytope faces.
Proof idea

SR

N(R) f-vector: (14,38,36,12)

&Qm

*) f-vector: (18,52,50,16)

— For upper bounds on the number of N(R) faces consider generic
inputs, i.e. no parallel edges.



Facets of 4-d resultant polytopes

Lemma
All the possible types of N(R) facets are

> resultant facet:
> prism facet: + 1-d N(R)
> cube facet: 1-d N(R) + 1-d N(R) 4+ 1-d N(R)

3D
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Facets of 4-d resultant polytopes

Lemma
All the possible types of N(R) facets are

> resultant facet:
> prism facet: + 1-d N(R)
> cube facet: 1-d N(R) + 1-d N(R) 4+ 1-d N(R)
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Counting facets

Lemma

There can be at most 9,9,4 resultant, prism, cube facets, resp., and this
is tight.

Proof idea

» Unique subdivision that corresponds to 4 cube facets




Faces of 4-d resultant polytopes

Lemma }

The maximal number of ridges of N(R) is f; = 66. Moreover,

f1 = fo +44, 22 < fy < 28, and 66 < f; < 72. The lower bounds are
tight.

Elements of proof

> [Kalai87]

fi+ ) (i—3)f5 > dfo — (dzl),

i>4

where 5 is the number of 2-faces which are i-gons.
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Open
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Open

Explain symmetry of f-vectors of 4d-resultant polytopes.
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Open problems & a conjecture

Open
The maximum f-vector of a 4d-resultant polytope is (22,66, 66,22).

Open

Explain symmetry of f-vectors of 4d-resultant polytopes.

Conjecture

fold<3- >  J[f

[S|=d—1 ies

where S is any multiset with elements in {1,...,d

= Zies i,

and fo(1) is the maximum number of vertices of a i-dimensional N(R).

» The only bound in terms of d is (3d — 3) 2d? [Sturmfels'94], yielding
fo(5) < 12°° whereas our conjecture yields fo(5) < 231.
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Thank you!



