#### Combinatorics of 4-dimensional Resultant Polytopes

Vissarion Fisikopoulos

Joint work with Alicia Dickenstein (U. Buenos Aires) & Ioannis Z. Emiris (UoA)

Dept. of Informatics & Telecommunications, University of Athens

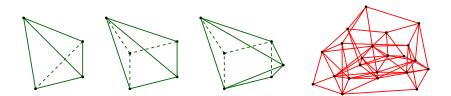


**ISSAC 2013** 

## Resultant polytopes

► Algebra: generalization of the resultant polynomial degree

- Geometry: Minkowski summands of secondary polytopes
- $\blacktriangleright$  Applications: support computation  $\rightarrow$  discriminant and resultant computation



#### • Given n + 1 polynomials on n variables.

- Supports (set of exponents of monomials with non-zero coefficient)  $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ .
- The resultant R is the polynomial in the coefficients of a system of polynomials which vanishes if there exists a common root in the torus of the given polynomials.
- The resultant polytope N(R), is the convex hull of the support of R, i.e. the Newton polytope of the resultant.

 $f_0(x) = ax^2 + b$  $f_1(x) = cx^2 + dx + e$ 

- Given n + 1 polynomials on n variables.
- ▶ Supports (set of exponents of monomials with non-zero coefficient)  $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ .
- The resultant R is the polynomial in the coefficients of a system of polynomials which vanishes if there exists a common root in the torus of the given polynomials.
- The resultant polytope N(R), is the convex hull of the support of R, i.e. the Newton polytope of the resultant.

| $f_0(x) = ax^2 + b$      | $A_0$ | •• |
|--------------------------|-------|----|
| $f_1(x) = cx^2 + dx + e$ | $A_1$ | •• |

- Given n + 1 polynomials on n variables.
- ▶ Supports (set of exponents of monomials with non-zero coefficient)  $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ .
- The resultant R is the polynomial in the coefficients of a system of polynomials which vanishes if there exists a common root in the torus of the given polynomials.
- The resultant polytope N(R), is the convex hull of the support of R, i.e. the Newton polytope of the resultant.

 $f_0(x) = ax^2 + b \qquad A_0 \qquad \bullet \quad -- \quad \bullet \\ f_1(x) = cx^2 + dx + e \qquad A_1 \qquad \bullet \quad - \quad \bullet \quad - \quad \bullet \\ \end{cases}$ 

 $R(a,b,c,d,e)=ad^2b+c^2b^2-2caeb+a^2e^2$ 

- Given n + 1 polynomials on n variables.
- ▶ Supports (set of exponents of monomials with non-zero coefficient)  $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ .
- The resultant R is the polynomial in the coefficients of a system of polynomials which vanishes if there exists a common root in the torus of the given polynomials.
- The resultant polytope N(R), is the convex hull of the support of R, i.e. the Newton polytope of the resultant.

$$f_0(x) = ax^2 + b$$

$$f_1(x) = cx^2 + dx + e$$

$$R(a, b, c, d, e) = ad^2b + c^2b^2 - 2caeb + a^2e^2$$

$$N(R)$$

The case of linear polynomials

$$f_{0}(x, y) = ax + by + c$$

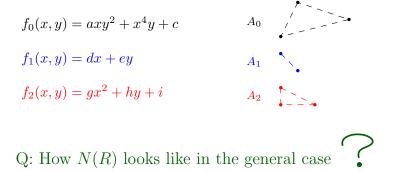
$$f_{1}(x, y) = dx + ey + f$$

$$f_{2}(x, y) = gx + hy + i$$

$$R(a, b, c, d, e, f, g, h, i) = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$$

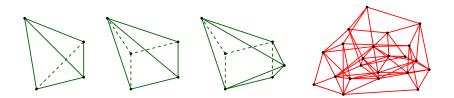
$$N(R)$$

4-dimensional Birkhoff polytope



# Resultant polytopes: Motivation

- Algebra: useful to express the solvability of polynomial systems, generalizes the notion of the degree of the resultant
- Geometry: Minkowski summands of secondary polytopes, equival. classes of secondary vertices, generalize Birkhoff polytopes
- ► Applications: support computation → discriminant and resultant computation, implicitization of parametric hypersurfaces



## Existing work

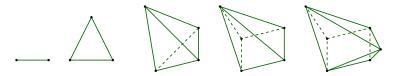
 $\blacktriangleright \ [\mathsf{GKZ'90}] \ Univariate \ case \ / \ general \ dimensional \ N(R)$ 

[Sturmfels'94] Multivariate case / up to 3 dimensional N(R)

## Existing work

► [GKZ'90] Univariate case / general dimensional N(R)

▶ [Sturmfels'94] Multivariate case / up to 3 dimensional N(R)



# One step beyond... 4-dimensional N(R)

▶ Polytope  $P \subseteq \mathbb{R}^4$ ; f-vector is the vector of its face cardinalities.

Call vertices, edges, ridges, facets, the 0,1,2,3-d, resp., faces of P.

f-vectors of 4-dimensional N(R)

# One step beyond... 4-dimensional N(R)

- ▶ Polytope  $P \subseteq \mathbb{R}^4$ ; f-vector is the vector of its face cardinalities.
- ► Call vertices, edges, ridges, facets, the 0,1,2,3-d, resp., faces of P.
- ▶ f-vectors of 4-dimensional N(R)

One step beyond... 4-dimensional N(R)

- $\blacktriangleright$  Polytope  $P\subseteq \mathbb{R}^4;$  f-vector is the vector of its face cardinalities.
- ► Call vertices, edges, ridges, facets, the 0,1,2,3-d, resp., faces of P.
- f-vectors of 4-dimensional N(R)

| (5, 10, 10, 5)   | (18, 53, 53, 18) |
|------------------|------------------|
| (6, 15, 18, 9)   | (18, 54, 54, 18) |
| (8, 20, 21, 9)   | (19, 54, 52, 17) |
| (9, 22, 21, 8)   | (19, 55, 51, 15) |
|                  | (19, 55, 52, 16) |
|                  | (19, 55, 54, 18) |
|                  | (19, 56, 54, 17) |
| (17, 49, 48, 16) | (19, 56, 56, 19) |
| (17, 49, 49, 17) | (19, 57, 57, 19) |
| (17, 50, 50, 17) | (20, 58, 54, 16) |
| (18, 51, 48, 15) | (20, 59, 57, 18) |
| (18, 51, 49, 16) | (20, 60, 60, 20) |
| (18, 52, 50, 16) | (21, 62, 60, 19) |
| (18, 52, 51, 17) | (21, 63, 63, 21) |
| (18, 53, 51, 16) | (22, 66, 66, 22) |
|                  |                  |

# Computation of resultant polytopes



- ▶ respol software [Emiris-F-Konaxis-Peñaranda '12]
  - Iower bounds
  - ► C++, CGAL (Computational Geometry Algorithms Library)
  - http://sourceforge.net/projects/respol
- Alternative algorithm that utilizes tropical geometry (GFan library) [Jensen-Yu '11]

# Computation of resultant polytopes



- respol software [Emiris-F-Konaxis-Peñaranda '12]
  - Iower bounds
  - ► C++, CGAL (Computational Geometry Algorithms Library)
  - http://sourceforge.net/projects/respol
- Alternative algorithm that utilizes tropical geometry (GFan library) [Jensen-Yu '11]

#### Theorem

- (i) All  $|A_i| = 2$ , except for one with cardinality 5, is a 4-simplex with f-vector (5, 10, 10, 5).
- (ii) All |A<sub>i</sub>| = 2, except for two with cardinalities 3 and 4, has f-vector (10, 26, 25, 9).
- (iii) All  $|A_t| = 2$ , except for three with cardinality 3, maximal number of ridges is  $\tilde{f}_2 = 66$  and of facets  $\tilde{f}_3 = 22$ . Moreover,  $22 \le \tilde{f}_0 \le 28$ , and  $66 \le \tilde{f}_1 \le 72$ . The lower bounds are tight.

- Degenarations can only decrease the number of faces.
- Focus on new case (iii), which reduces to n = 2 and each |A<sub>i</sub>| = 3.
- Previous upper bound for vertices yields 6608 [Sturmfels'94].

#### Theorem

- (i) All  $|A_i| = 2$ , except for one with cardinality 5, is a 4-simplex with f-vector (5, 10, 10, 5).
- (ii) All |A<sub>i</sub>| = 2, except for two with cardinalities 3 and 4, has f-vector (10, 26, 25, 9).
- (iii) All  $|A_t| = 2$ , except for three with cardinality 3, maximal number of ridges is  $\tilde{f}_2 = 66$  and of facets  $\tilde{f}_3 = 22$ . Moreover,  $22 \le \tilde{f}_0 \le 28$ , and  $66 \le \tilde{f}_1 \le 72$ . The lower bounds are tight.

- Degenarations can only decrease the number of faces.
- Focus on new case (iii), which reduces to n = 2 and each |A<sub>i</sub>| = 3.
- Previous upper bound for vertices yields 6608 [Sturmfels'94].

#### Theorem

- (i) All  $|A_i| = 2$ , except for one with cardinality 5, is a 4-simplex with f-vector (5, 10, 10, 5).
- (ii) All  $|A_i| = 2$ , except for two with cardinalities 3 and 4, has f-vector (10, 26, 25, 9).
- (iii) All |A<sub>i</sub>| = 2, except for three with cardinality 3, maximal number of ridges is f<sub>2</sub> = 66 and of facets f<sub>3</sub> = 22. Moreover, 22 ≤ f<sub>0</sub> ≤ 28, and 66 ≤ f<sub>1</sub> ≤ 72. The lower bounds are tight.

- Degenarations can only decrease the number of faces.
- Focus on new case (iii), which reduces to n = 2 and each |A<sub>i</sub>| = 3.
- Previous upper bound for vertices yields 6608 [Sturmfels'94].

#### Theorem

- (i) All  $|A_i| = 2$ , except for one with cardinality 5, is a 4-simplex with f-vector (5, 10, 10, 5).
- (ii) All  $|A_i| = 2$ , except for two with cardinalities 3 and 4, has f-vector (10, 26, 25, 9).
- (iii) All  $|A_i| = 2$ , except for three with cardinality 3, maximal number of ridges is  $\tilde{f_2} = 66$  and of facets  $\tilde{f_3} = 22$ . Moreover,  $22 \le \tilde{f_0} \le 28$ , and  $66 \le \tilde{f_1} \le 72$ . The lower bounds are tight.

- Degenarations can only decrease the number of faces.
- Focus on new case (iii), which reduces to n = 2 and each  $|A_i| = 3$ .
- Previous upper bound for vertices yields 6608 [Sturmfels'94].

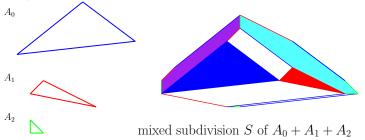
#### Theorem

- (i) All  $|A_i| = 2$ , except for one with cardinality 5, is a 4-simplex with f-vector (5, 10, 10, 5).
- (ii) All  $|A_i| = 2$ , except for two with cardinalities 3 and 4, has f-vector (10, 26, 25, 9).
- (iii) All  $|A_i| = 2$ , except for three with cardinality 3, maximal number of ridges is  $\tilde{f_2} = 66$  and of facets  $\tilde{f_3} = 22$ . Moreover,  $22 \le \tilde{f_0} \le 28$ , and  $66 \le \tilde{f_1} \le 72$ . The lower bounds are tight.

- Degenarations can only decrease the number of faces.
- Focus on new case (iii), which reduces to n = 2 and each  $|A_i| = 3$ .
- Previous upper bound for vertices yields 6608 [Sturmfels'94].

A subdivision S of  $A_0 + A_1 + \cdots + A_n$  is mixed when its cells have expressions as Minkowski sums of convex hulls of point subsets in  $A_i$ 's.

#### Example

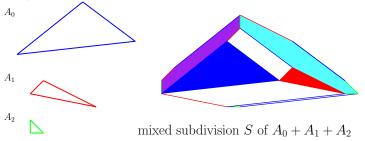


#### Proposition (Sturmfels'94)

A regular mixed subdivision S of  $A_0 + A_1 + \cdots + A_n$  corresponds to a face of N(R) which is the Minkowski sum of the resultant polytopes of the cells (subsystems) of S.

A subdivision S of  $A_0 + A_1 + \cdots + A_n$  is mixed when its cells have expressions as Minkowski sums of convex hulls of point subsets in  $A_i$ 's.

#### Example



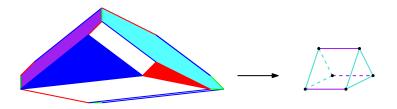
#### Proposition (Sturmfels'94)

A regular mixed subdivision S of  $A_0 + A_1 + \cdots + A_n$  corresponds to a face of N(R) which is the Minkowski sum of the resultant polytopes of the cells (subsystems) of S.

#### Example

 $\blacktriangleright$  white, blue, red cells  $\rightarrow N(R)$  vertex

- purple cell  $\rightarrow N(R)$  segment
- turquoise cell  $\rightarrow N(R)$  triangle

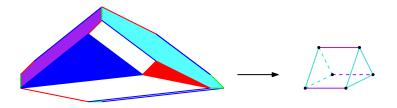


subd. S of  $A_0 + A_1 + A_2$ 

Mink. sum of N(R) triangle and N(R) segment

#### Example

- $\blacktriangleright$  white, blue, red cells  $\rightarrow N(R)$  vertex
- purple cell  $\rightarrow N(R)$  segment
- turquoise cell  $\rightarrow N(R)$  triangle

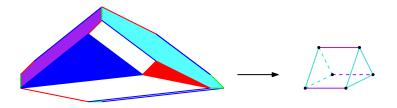


subd. S of  $A_0 + A_1 + A_2$ 

Mink. sum of N(R) triangle and N(R) segment

#### Example

- $\blacktriangleright$  white, blue, red cells  $\rightarrow N(R)$  vertex
- purple cell  $\rightarrow N(R)$  segment
- turquoise cell  $\rightarrow N(R)$  triangle



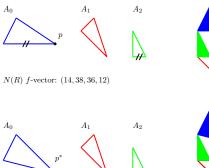
subd. S of  $A_0 + A_1 + A_2$ 

Mink. sum of N(R) triangle and N(R) segment

# Tool (2): Input genericity

#### Proposition

*Input genericity maximizes the number of resultant polytope faces.* Proof idea

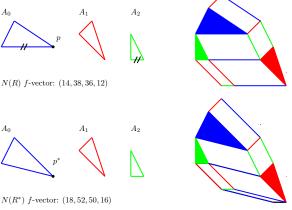


 $N(R^*)$  f-vector: (18, 52, 50, 16)

# Tool (2): Input genericity

#### Proposition

*Input genericity maximizes the number of resultant polytope faces.* Proof idea



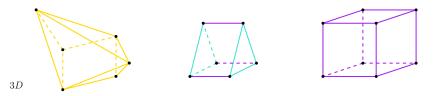
 $\rightarrow$  For upper bounds on the number of N(R) faces consider generic inputs, i.e. no parallel edges.

# Facets of 4-d resultant polytopes

Lemma

All the possible types of N(R) facets are

- resultant facet: 3-d N(R)
- prism facet: 2-d N(R) (triangle) + 1-d N(R)
- cube facet: 1 d N(R) + 1 d N(R) + 1 d N(R)

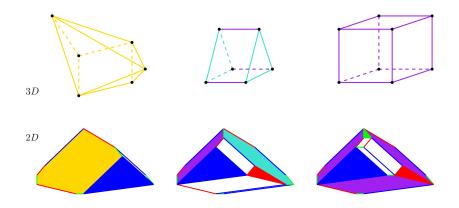


# Facets of 4-d resultant polytopes

Lemma

All the possible types of N(R) facets are

- resultant facet: 3-d N(R)
- prism facet: 2-d N(R) (triangle) + 1-d N(R)
- cube facet: 1 d N(R) + 1 d N(R) + 1 d N(R)



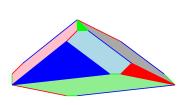
# Counting facets

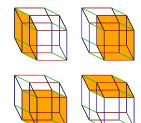
#### Lemma

There can be at most 9,9,4 resultant, prism, cube facets, resp., and this is tight.

#### Proof idea

Unique subdivision that corresponds to 4 cube facets





# Faces of 4-d resultant polytopes

#### Lemma

The maximal number of ridges of N(R) is  $\tilde{f_2} = 66$ . Moreover,  $\tilde{f_1} = \tilde{f_0} + 44$ ,  $22 \le \tilde{f_0} \le 28$ , and  $66 \le \tilde{f_1} \le 72$ . The lower bounds are tight.

#### Elements of proof

▶ [Kalai87]

$$f_1 + \sum_{i \geq 4} (i-3)f_2^i \geq df_0 - \binom{d+1}{2},$$

where  $f_2^i$  is the number of 2-faces which are i-gons.

#### Open

The maximum f-vector of a 4d-resultant polytope is (22, 66, 66, 22).

#### Open

Explain symmetry of f-vectors of 4d-resultant polytopes.

Conjecture

$$f_0(d) \leq 3 \cdot \sum_{\|S\|=d-1} \prod_{i \in S} \tilde{f_0}(i)$$

where S is any multiset with elements in  $\{1, \ldots, d-1\}$ ,  $||S|| := \sum_{i \in S} i$ , and  $\tilde{f_0}(i)$  is the maximum number of vertices of a i-dimensional N(R).

▶ The only bound in terms of d is  $(3d-3)^{2d^2}$  [Sturmfels'94], yielding  $\tilde{f_0}(5) \le 12^{50}$  whereas our conjecture yields  $\tilde{f_0}(5) \le 231$ .

#### Open

The maximum f-vector of a 4d-resultant polytope is (22, 66, 66, 22).

#### Open

Explain symmetry of f-vectors of 4d-resultant polytopes.

#### Conjecture

$$f_0(d) \leq 3 \cdot \sum_{\|S\|=d-1} \prod_{i \in S} \tilde{f_0}(i)$$

where S is any multiset with elements in  $\{1, \ldots, d-1\}$ ,  $||S|| := \sum_{i \in S} i$ , and  $\tilde{f_0}(i)$  is the maximum number of vertices of a i-dimensional N(R).

▶ The only bound in terms of d is  $(3d-3)^{2d^2}$  [Sturmfels'94], yielding  $\tilde{f_0}(5) \le 12^{50}$  whereas our conjecture yields  $\tilde{f_0}(5) \le 231$ .

#### Open

The maximum f-vector of a 4d-resultant polytope is (22, 66, 66, 22).

#### Open

Explain symmetry of f-vectors of 4d-resultant polytopes.

#### Conjecture

$$f_0(d) \leq 3 \cdot \sum_{\|S\|=d-1} \ \prod_{i \in S} \tilde{f_0}(i)$$

where S is any multiset with elements in  $\{1,\ldots,d-1\}$ ,  $\|S\|:=\sum_{i\in S}i$ , and  $\tilde{f_0}(i)$  is the maximum number of vertices of a i-dimensional N(R).

▶ The only bound in terms of d is  $(3d-3)^{2d^2}$  [Sturmfels'94], yielding  $\tilde{f}_0(5) \leq 12^{50}$  whereas our conjecture yields  $\tilde{f}_0(5) \leq 231$ .

#### Open

The maximum f-vector of a 4d-resultant polytope is (22, 66, 66, 22).

#### Open

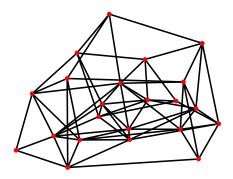
Explain symmetry of f-vectors of 4d-resultant polytopes.

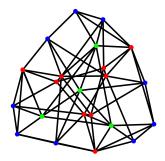
#### Conjecture

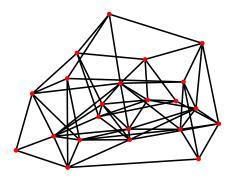
$$f_0(d) \leq 3 \cdot \sum_{\|S\|=d-1} \prod_{i \in S} \tilde{f_0}(i)$$

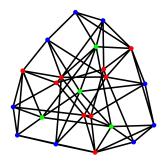
where S is any multiset with elements in  $\{1,\ldots,d-1\}$ ,  $\|S\| \coloneqq \sum_{i\in S} i$ , and  $\tilde{f_0}(i)$  is the maximum number of vertices of a i-dimensional N(R).

▶ The only bound in terms of d is  $(3d-3)^{2d^2}$  [Sturmfels'94], yielding  $\tilde{f_0}(5) \le 12^{50}$  whereas our conjecture yields  $\tilde{f_0}(5) \le 231$ .









# Thank you!