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Resultant polytopes

I Algebra: generalization of the resultant polynomial degree

I Geometry: Minkowski summands of secondary polytopes

I Applications: support computation → discriminant and resultant
computation



Polytopes and Algebra

I Given n+ 1 polynomials on n variables.

I Supports (set of exponents of monomials with non-zero coefficient)
A0, A1, . . . , An ⊂ Zn.

I The resultant R is the polynomial in the coefficients of a system of
polynomials which vanishes if there exists a common root in the
torus of the given polynomials.

I The resultant polytope N(R), is the convex hull of the support of R,
i.e. the Newton polytope of the resultant.

f0(x) = ax2 + b

f1(x) = cx2 + dx+ e
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Polytopes and Algebra

The case of linear polynomials

A0

A1

N(R)

A2

4-dimensional Birkhoff polytope

f0(x, y) = ax+ by + c

f1(x, y) = dx+ ey + f

f2(x, y) = gx+ hy + i

a b c
d e f
g h i

R(a, b, c, d, e, f, g, h, i) =



Polytopes and Algebra

A0

A1

Q: How N(R) looks like in the general case

A2

f0(x, y) = axy2 + x4y + c

f1(x, y) = dx+ ey

f2(x, y) = gx2 + hy + i



Resultant polytopes: Motivation

I Algebra: useful to express the solvability of polynomial systems,
generalizes the notion of the degree of the resultant

I Geometry: Minkowski summands of secondary polytopes, equival.
classes of secondary vertices, generalize Birkhoff polytopes

I Applications: support computation → discriminant and resultant
computation, implicitization of parametric hypersurfaces



Existing work

I [GKZ’90] Univariate case / general dimensional N(R)

I [Sturmfels’94] Multivariate case / up to 3 dimensional N(R)
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One step beyond... 4-dimensional N(R)

I Polytope P ⊆ R4; f-vector is the vector of its face cardinalities.

I Call vertices, edges, ridges, facets, the 0,1,2,3-d, resp., faces of P.

I f-vectors of 4-dimensional N(R)

(5, 10, 10, 5)
(6, 15, 18, 9)
(8, 20, 21, 9)
(9, 22, 21, 8)
.
.
.
(17, 49, 48, 16)
(17, 49, 49, 17)
(17, 50, 50, 17)
(18, 51, 48, 15)
(18, 51, 49, 16)
(18, 52, 50, 16)
(18, 52, 51, 17)
(18, 53, 51, 16)

(18, 53, 53, 18)
(18, 54, 54, 18)
(19, 54, 52, 17)
(19, 55, 51, 15)
(19, 55, 52, 16)
(19, 55, 54, 18)
(19, 56, 54, 17)
(19, 56, 56, 19)
(19, 57, 57, 19)
(20, 58, 54, 16)
(20, 59, 57, 18)
(20, 60, 60, 20)
(21, 62, 60, 19)
(21, 63, 63, 21)
(22, 66, 66, 22)
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Computation of resultant polytopes

I respol software [Emiris-F-Konaxis-Peñaranda ’12]

I lower bounds

I C++, CGAL (Computational Geometry Algorithms Library)

I http://sourceforge.net/projects/respol

I Alternative algorithm that utilizes tropical geometry (GFan library)
[Jensen-Yu ’11]
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Main result

Theorem
Given A0, A1, . . . , An ⊂ Zn with N(R) of dimension 4. Then N(R) are
degenerations of the polytopes in following cases.

(i) All |Ai| = 2, except for one with cardinality 5, is a 4-simplex with
f-vector (5, 10, 10, 5).

(ii) All |Ai| = 2, except for two with cardinalities 3 and 4, has f-vector
(10, 26, 25, 9).

(iii) All |Ai| = 2, except for three with cardinality 3, maximal number of
ridges is f̃2 = 66 and of facets f̃3 = 22. Moreover, 22 ≤ f̃0 ≤ 28,
and 66 ≤ f̃1 ≤ 72. The lower bounds are tight.

I Degenarations can only decrease the number of faces.

I Focus on new case (iii), which reduces to n = 2 and each |Ai| = 3.

I Previous upper bound for vertices yields 6608 [Sturmfels’94].
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Tool (1): N(R) faces and subdivisions

A subdivision S of A0 +A1 + · · ·+An is mixed when its cells have
expressions as Minkowski sums of convex hulls of point subsets in Ai’s.

Example

mixed subdivision S of A0 + A1 + A2

A0

A1

A2

Proposition (Sturmfels’94)
A regular mixed subdivision S of A0 +A1 + · · ·+An corresponds to a
face of N(R) which is the Minkowski sum of the resultant polytopes of
the cells (subsystems) of S.
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Tool (1): N(R) faces and subdivisions

Example

I white, blue, red cells → N(R) vertex

I purple cell → N(R) segment

I turquoise cell → N(R) triangle

Mink. sum of N(R) triangle and N(R) segmentsubd. S of A0 + A1 + A2
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Tool (2): Input genericity

Proposition
Input genericity maximizes the number of resultant polytope faces.

Proof idea

N(R∗) f -vector: (18, 52, 50, 16)

N(R) f -vector: (14, 38, 36, 12)

p

p∗

A0 A1 A2

A0 A1 A2



Tool (2): Input genericity

Proposition
Input genericity maximizes the number of resultant polytope faces.

Proof idea

N(R∗) f -vector: (18, 52, 50, 16)

N(R) f -vector: (14, 38, 36, 12)

p

p∗

A0 A1 A2

A0 A1 A2

→ For upper bounds on the number of N(R) faces consider generic
inputs, i.e. no parallel edges.



Facets of 4-d resultant polytopes

Lemma
All the possible types of N(R) facets are

I resultant facet: 3-d N(R)

I prism facet: 2-d N(R) (triangle) + 1-d N(R)

I cube facet: 1-d N(R) + 1-d N(R) + 1-d N(R)

3D
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Counting facets

Lemma
There can be at most 9, 9, 4 resultant, prism, cube facets, resp., and this
is tight.

Proof idea

I Unique subdivision that corresponds to 4 cube facets



Faces of 4-d resultant polytopes

Lemma
The maximal number of ridges of N(R) is f̃2 = 66. Moreover,
f̃1 = f̃0 + 44, 22 ≤ f̃0 ≤ 28, and 66 ≤ f̃1 ≤ 72. The lower bounds are
tight.

Elements of proof

I [Kalai87]

f1 +
∑
i≥4

(i− 3)fi2 ≥ df0 −

(
d+ 1

2

)
,

where fi2 is the number of 2-faces which are i-gons.



Open problems & a conjecture

Open
The maximum f-vector of a 4d-resultant polytope is (22, 66, 66, 22).

Open
Explain symmetry of f-vectors of 4d-resultant polytopes.

Conjecture

f0(d) ≤ 3 ·
∑

‖S‖=d−1

∏
i∈S

f̃0(i)

where S is any multiset with elements in {1, . . . , d− 1}, ‖S‖ := ∑
i∈S i,

and f̃0(i) is the maximum number of vertices of a i-dimensional N(R).

I The only bound in terms of d is (3d− 3)2d
2

[Sturmfels’94], yielding
f̃0(5) ≤ 1250 whereas our conjecture yields f̃0(5) ≤ 231.
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Thank you!


