Regular triangulations and resultant polytopes

Vissarion Fisikopoulos joint work with Ioannis Z. Emiris and Christos Konaxis

National and Kapodistrian University of Athens Department of Informatics and Telecommunications

22 March 2010

KORK EXTERNE PROVIDING

Motivation

• **Computation of Resultants**

- solve polynomial systems
- **Implicitization**
	- parametric (hyper)surfaces

• Reduction to graph enumeration problems

◆ロト→伊ト→ミト→ミト

 \Rightarrow η

Outline

KORKA SERVER ORA

1 [Triangulations, mixed subdivisions, and polynomial systems](#page-3-0)

- [triangulations mixed subdivisions \(Cayley trick\)](#page-3-0)
- [mixed subdivisions Newton polytope of the Resultant](#page-3-0)

2 [Mixed cell configurations and cubical flips](#page-10-0)

- [define equivalence classes of mixed subdivisions](#page-10-0)
- [flips between classes of mixed subdivisions](#page-10-0)

Outline

KORKA SERVER ORA

1 [Triangulations, mixed subdivisions, and polynomial systems](#page-3-0)

- [triangulations mixed subdivisions \(Cayley trick\)](#page-3-0)
- [mixed subdivisions Newton polytope of the Resultant](#page-3-0)

[Mixed cell configurations and cubical flips](#page-10-0)

- [define equivalence classes of mixed subdivisions](#page-10-0)
- [flips between classes of mixed subdivisions](#page-10-0)

The Secondary Polytope

KORK ERREPADE KORA

Let A a set of n points in \mathbb{R}^d .

Theorem [Gelfand-Kapranov-Zelevinsky]

To every point set A corresponds a Secondary polytope $\Sigma(A)$ with dimension $n - d - 1$. The vertices correspond to the regular triangulations of A and the edges to (bistellar) flips.

Enumeration of regular triangulations: [Rambau02], [Masada et al.96]

Mixed Subdivisions

KORKA SERVER ORA

Let A_0, A_1, \ldots, A_k point sets in \mathbb{R}^d and $A = A_0 + A_1 + \ldots + A_k$ their Minkowski sum.

Definition

A regular polyhedral subdivision of A is called **regular fine mixed subdivision** if for every cell σ

- $\sigma = F_0 + \cdots + F_k$ for certain subsets $F_0 \subseteq A_0, \ldots, F_k \subseteq A_k$
- all F_i are affinely independent and σ does not contain any other cell

The Cayley Trick

KEL KA LEIKER EI KRN

Definition

The \textsf{Cayley} embedding of A_0,\ldots,A_k in \mathbb{R}^d is the point set

$$
\mathcal{C}(A_0,\ldots, A_k) = A_0 \times \{e_0\} \cup \cdots \cup A_k \times \{e_k\} \subseteq \mathbb{R}^d \times \mathbb{R}^k
$$

where e_0,\ldots,e_k are an affine basis of $\mathbb{R}^k.$

Proposition (the Cayley trick)

Resultant polytope

Let $f = f_0, f_1, \ldots, f_k$ where $f_i \in K[x_1, \ldots, x_k]$ with coefficients c_{ij} . **Definitions**

- \bullet Given a polynomial f_i its support $sup(f_i)$ is the set of its exponent vectors and **Newton polytope** $N(f_i)$ is the convex hull of $sup(f_i)$.
- The **Resultant** of f is a polynomial $R \in K[c_{ij}]$ s.t. $R = 0$ iff f has a common root.
- The Newton polytope of the Resultant is the **Resultant polytope**.

i-mixed cells

Let A_0, A_1, \ldots, A_k s.t. $A_j = sup(f_j), A = A_0 + A_1 + \cdots + A_k$ **Definition**

A cell σ of a mixed subdivision is called **i-mixed** if for all j exists $F_i \subseteq A_j$ s.t.

$$
\sigma = F_0 + \cdots + F_{i-1} + F_i + F_{i+1} + \cdots + F_k
$$

where $\left|F_{j}\right|=2$ (edges) for all $j\neq i$ and $\left|F_{i}\right|=1$ (vertex).

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 → 9 Q @

Resultant Extreme Terms

KORK ERREPADE KORA

Theorem [Sturmfels]

Given a regular fine mixed subdivision of $A = A_0 + A_1 + \cdots + A_k$ we get a unique vertex of the Resultant polytope $N(R)$

- there is a many to one mapping from regular fine mixed subdivisions to vertices of $N(R)$
- \bullet the construction depends only on i -mixed cells

An Algorithm

Outline

KORKA SERVER ORA

[Triangulations, mixed subdivisions, and polynomial systems](#page-3-0)

- [triangulations mixed subdivisions \(Cayley trick\)](#page-3-0)
- [mixed subdivisions Newton polytope of the Resultant](#page-3-0)

2 [Mixed cell configurations and cubical flips](#page-10-0)

- [define equivalence classes of mixed subdivisions](#page-10-0)
- • [flips between classes of mixed subdivisions](#page-10-0)

i - Mixed Cells Configurations

Generalizing mixed cells configurations of [MichielsVerschelde99]

Definition

i**-mixed cells configurations** are the equivalence classes of mixed subdivisions with the same *i*-mixed cells for all $i \in \{0, 1, \ldots, k\}$.

Proposition

There exist flips that transform one i -mixed cell configuration to another by destroying at least one i-mixed cell.

KORKA SERVER ORA

i - Mixed Cells Configurations

Generalizing mixed cells configurations of [MichielsVerschelde99]

Definition

i**-mixed cells configurations** are the equivalence classes of mixed subdivisions with the same *i*-mixed cells for all $i \in \{0, 1, \ldots, k\}$.

Proposition

There exist flips that transform one i -mixed cell configuration to another by destroying at least one i-mixed cell.

KORKA SERVER ORA

An example

K ロ ▶ K 個 ▶ K ミ ▶ K ミ ▶ 「 큰 → り Q Q →

Cubical Flips

• Let S a regular fine mixed subdivision then S has a cubical flip iff exists a set $C \subseteq S$ of i-mixed cells s.t. $C = F_0 + F_1 + \cdots + F_k$ and

$$
C = \begin{cases} C_0 = a_0 + F_1 + \dots + F_i + \dots + F_{k-1} + F_k \\ \vdots \\ C_i = F_0 + F_1 + \dots + a_i + \dots + F_{k-1} + F_k \\ \vdots \\ C_k = F_0 + F_1 + \dots + F_i + \dots + F_{k-1} + a_k \end{cases}
$$

where $a_i \in F_i \subseteq A_i, |a_i|=1, |F_i|=2.$

• The cubical flip supported on C of a subdivision S to a subdivision S' consist of changing every a_i with $F_i - \{a_i\}$.

Cubical Flips

KORKA SERVER ORA

• Let S a regular fine mixed subdivision then S has a cubical flip iff exists a set $C \subseteq S$ of i-mixed cells s.t. $C = F_0 + F_1 + \cdots + F_k$ and

$$
C' = \begin{cases} C'_0 = F_0 - \{a_0\} + F_1 + \dots + F_i + \dots + F_{k-1} + F_k \\ \vdots \\ C'_i = F_0 + F_1 + \dots + F_i - \{a_i\} + \dots + F_{k-1} + F_k \\ \vdots \\ C'_k = F_0 + F_1 + \dots + F_i + \dots + F_{k-1} + F_k - \{a_k\} \end{cases}
$$

where $a_i \in F_i \subseteq A_i, |a_i|=1, |F_i|=2.$

• The cubical flip supported on C of a subdivision S to a subdivision S' consist of changing every a_i with $F_i - \{a_i\}$.

Complexity

i-mixed cell configurations Resultant extreme terms

Conclusion - Future Work

- # Σ vertices $>$ # i-mixed cell configurations $>$ # $N(R)$ vertices
- Algorithmic test for cubical flips, disconnected graph of cubical flips
- Settle some easy cases
- Wiki page with experiments http://ergawiki.di.uoa.gr/index.php/Implicitization
- Enumerate Resultant polytope vertices
- $N(R)$ is a Minkowski summand of the Secondary polytope [MichielsCools00],[Sturmfels94]
- In some applications (e.g. implicitization) we need to compute only a silhouette w.r.t. a projection of $N(R)$ [EmirisKonaxisPalios07]

 \Rightarrow

 2990

◆ロト→伊ト→ミト→ミト

Thank You!

