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Motivation

• Computation of Resultants
• solve polynomial systems

• Implicitization
• parametric (hyper)surfaces

� Reduction to graph enumeration
problems



Outline

1 Triangulations, mixed subdivisions, and polynomial systems
� triangulations - mixed subdivisions (Cayley trick)
� mixed subdivisions - Newton polytope of the Resultant

2 Mixed cell configurations and cubical flips
� define equivalence classes of mixed subdivisions
� flips between classes of mixed subdivisions
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The Secondary Polytope
Let A a set of n points in Rd .

Theorem [Gelfand-Kapranov-Zelevinsky]
To every point set A corresponds a Secondary polytope �(A) with
dimension n � d � 1. The vertices correspond to the regular
triangulations of A and the edges to (bistellar) flips.

Enumeration of regular triangulations: [Rambau02], [Masada et al.96]



Mixed Subdivisions
Let A0;A1; : : : ;Ak point sets in Rd and A = A0 +A1 + : : : +Ak their
Minkowski sum.

Definition
A regular polyhedral subdivision of A is called regular fine mixed
subdivision if for every cell �

• � = F0 + � � �+ Fk for certain subsets F0 � A0; : : : ;Fk � Ak

• all Fi are affinely independent and � does not contain any other cell

not fine fine



The Cayley Trick

Definition
The Cayley embedding of A0; : : : ;Ak in Rd is the point set

C(A0; : : : ; Ak ) = A0 � fe0g [ � � � [Ak � fekg � R
d � Rk

where e0; : : : ; ek are an affine basis of Rk .

Proposition (the Cayley trick)

regular
triangulations

of
C(A0, . . . , Ak)

regular
fine mixed

subdivisions
of

A0 + . . . + Ak



Resultant polytope
Let f = f0; f1; : : : ; fk where fi 2 K [x1; : : : ; xk ] with coefficients cij .

Definitions
• Given a polynomial fi its support sup(fi ) is the set of its exponent

vectors and Newton polytope N (fi ) is the convex hull of sup(fi ).

• The Resultant of f is a polynomial R 2 K [cij ] s.t. R = 0 iff f has a
common root.

• The Newton polytope of the Resultant is the Resultant polytope.

(2,3)

(1,0)

(0,2)
N(f0)

(0,5)

(5,0)(0,0)

N(f1)

f0 = x2y3 + 3x− 5y2 f1 = x5 + y5 + 3



i -mixed cells
Let A0;A1; : : : ;Ak s.t. Aj = sup(fj ), A = A0 +A1 + � � �+Ak

Definition
A cell � of a mixed subdivision is called i-mixed if for all j exists Fj � Aj

s.t.
� = F0 + � � �+ Fi�1 + Fi + Fi+1 + � � �+ Fk

where jFj j = 2 (edges) for all j , i and jFi j = 1 (vertex).

0-mixed



Resultant Extreme Terms

Theorem [Sturmfels]
Given a regular fine mixed subdivision of A = A0 +A1 + � � �+Ak we
get a unique vertex of the Resultant polytope N (R)

• there is a many to one mapping from regular fine mixed subdivisions
to vertices of N (R)

• the construction depends only on i -mixed cells

An Algorithm

C(A0, . . . , Ak) Σ(C(A0, . . . , Ak)) N(R)A0, . . . , Ak

Cayley
Trick

Enumerate
all regular
triangulations

Strurmfel’s
Theorem
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i - Mixed Cells Configurations

Generalizing mixed cells configurations of [MichielsVerschelde99]

Definition
i-mixed cells configurations are the equivalence classes of mixed
subdivisions with the same i -mixed cells for all i 2 f0; 1; : : : ; kg.

Proposition
There exist flips that transform one i -mixed cell configuration to another
by destroying at least one i -mixed cell.



i - Mixed Cells Configurations

Generalizing mixed cells configurations of [MichielsVerschelde99]

Definition
i-mixed cells configurations are the equivalence classes of mixed
subdivisions with the same i -mixed cells for all i 2 f0; 1; : : : ; kg.

(1, 0, 1, 0, 0, 2, 0, 4, 0)

Proposition
There exist flips that transform one i -mixed cell configuration to another
by destroying at least one i -mixed cell.



An exampleA0 A1 A2

Secondary polytope
i-mixed cell configurations
Resultant polytope



Cubical Flips
• Let S a regular fine mixed subdivision then S has a cubical flip iff

exists a set C � S of i -mixed cells s.t. C = F0+F1+ � � �+Fk and

C =

8>>>>>>>><
>>>>>>>>:

C0 = a0 + F1 + � � �+ Fi + � � �+ Fk�1 + Fk

:
:
:

Ci = F0 + F1 + : : : + ai + � � �+ Fk�1 + Fk

:
:
:

Ck = F0 + F1 + � � �+ Fi + � � �+ Fk�1 + ak

where ai 2 Fi � Ai ; jai j = 1; jFi j = 2.

• The cubical flip supported on C of a subdivision S to a subdivision
S 0 consist of changing every ai with Fi � faig.



Cubical Flips
• Let S a regular fine mixed subdivision then S has a cubical flip iff

exists a set C � S of i -mixed cells s.t. C = F0 +F1 + � � �+Fk and

C 0 =

8>>>>>>>><
>>>>>>>>:

C 0

0 = F0 � fa0g+ F1 + � � �+ Fi + � � �+ Fk�1 + Fk

:
:
:

C 0

i = F0 + F1 + : : : + Fi � faig+ � � �+ Fk�1 + Fk

:
:
:

C 0

k = F0 + F1 + � � �+ Fi + � � �+ Fk�1 + Fk � fakg

where ai 2 Fi � Ai ; jai j = 1; jFi j = 2.

• The cubical flip supported on C of a subdivision S to a subdivision
S 0 consist of changing every ai with Fi � faig.



Enumerating N (R)
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Complexity

Secondary Polytope Resultant Polytopei-mixed cell configurations

i-mixed cell configurations Resultant extreme terms

122 98 8

104148 43018 21

76280 32076 95

3540 3126 22

supports
i-mixed cell

configurations
# Secondary

polytope vertices
# Resultant

polytope vertices



Conclusion - Future Work

• # � vertices � # i -mixed cell configurations � # N (R) vertices
• Algorithmic test for cubical flips, disconnected graph of cubical flips
• Settle some easy cases
• Wiki page with experiments

http://ergawiki.di.uoa.gr/index.php/Implicitization

• Enumerate Resultant polytope vertices

• N (R) is a Minkowski summand of the Secondary polytope
[MichielsCools00],[Sturmfels94]

• In some applications (e.g. implicitization) we
need to compute only a silhouette w.r.t. a
projection of N (R) [EmirisKonaxisPalios07]

N(R)

 http://ergawiki.di.uoa.gr/index.php/Implicitization
 http://ergawiki.di.uoa.gr/index.php/Implicitization


Thank You!


	Triangulations, mixed subdivisions, and polynomial systems
	 triangulations - mixed subdivisions (Cayley trick)
	 mixed subdivisions - Newton polytope of the Resultant

	Mixed cell configurations and cubical flips
	 define equivalence classes of mixed subdivisions
	 flips between classes of mixed subdivisions


