Regular triangulations and resultant polytopes

Vissarion Fisikopoulos joint work with Ioannis Z. Emiris and Christos Konaxis

National and Kapodistrian University of Athens Department of Informatics and Telecommunications

22 March 2010

イロト イヨト イヨト ニヨー シッペ

Motivation

Computation of Resultants

- solve polynomial systems
- Implicitization
 - parametric (hyper)surfaces

• Reduction to graph enumeration problems

イロト イヨト イヨト イヨト

ж

Outline

イロト イヨト イヨト ニヨー シッペ

Triangulations, mixed subdivisions, and polynomial systems

- triangulations mixed subdivisions (Cayley trick)
- mixed subdivisions Newton polytope of the Resultant

2 Mixed cell configurations and cubical flips

- · define equivalence classes of mixed subdivisions
- flips between classes of mixed subdivisions

Outline

うして ふぼう ふほう ふほう うんの

1 Triangulations, mixed subdivisions, and polynomial systems

- triangulations mixed subdivisions (Cayley trick)
- mixed subdivisions Newton polytope of the Resultant

2 Mixed cell configurations and cubical flips

- define equivalence classes of mixed subdivisions
- flips between classes of mixed subdivisions

The Secondary Polytope

イロト (四) (日) (日) (日) (日) (日)

Let A a set of n points in \mathbb{R}^d .

Theorem [Gelfand-Kapranov-Zelevinsky]

To every point set *A* corresponds a Secondary polytope $\Sigma(A)$ with dimension n - d - 1. The vertices correspond to the regular triangulations of *A* and the edges to (bistellar) flips.

Enumeration of regular triangulations: [Rambau02], [Masada et al.96]

Mixed Subdivisions

イロト (四) (日) (日) (日) (日) (日)

Let A_0, A_1, \ldots, A_k point sets in \mathbb{R}^d and $A = A_0 + A_1 + \ldots + A_k$ their Minkowski sum.

Definition

A regular polyhedral subdivision of *A* is called **regular fine mixed subdivision** if for every cell σ

- $\sigma = F_0 + \cdots + F_k$ for certain subsets $F_0 \subseteq A_0, \ldots, F_k \subseteq A_k$
- all F_i are affinely independent and σ does not contain any other cell

The Cayley Trick

イロト (四) (日) (日) (日) (日) (日)

Definition

The **Cayley embedding** of A_0, \ldots, A_k in \mathbb{R}^d is the point set

$$\mathcal{C}(A_0,\ldots,\;A_k)\;=\;A_0 imes\{e_0\}\cup\cdots\cup A_k imes\{e_k\}\subseteq\mathbb{R}^d imes\mathbb{R}^k$$

where e_0, \ldots, e_k are an affine basis of \mathbb{R}^k .

Proposition (the Cayley trick)

Resultant polytope

Let $f = f_0, f_1, \dots, f_k$ where $f_i \in K[x_1, \dots, x_k]$ with coefficients c_{ij} . Definitions

- Given a polynomial f_i its **support** $sup(f_i)$ is the set of its exponent vectors and **Newton polytope** $N(f_i)$ is the convex hull of $sup(f_i)$.
- The **Resultant** of *f* is a polynomial *R* ∈ *K*[*c_{ij}*] s.t. *R* = 0 iff *f* has a common root.
- The Newton polytope of the Resultant is the **Resultant polytope**.

i-mixed cells

Let A_0, A_1, \ldots, A_k s.t. $A_j = sup(f_j), A = A_0 + A_1 + \cdots + A_k$ Definition

A cell σ of a mixed subdivision is called **i-mixed** if for all j exists $F_j \subseteq A_j$ s.t.

$$\sigma = F_0 + \cdots + F_{i-1} + F_i + F_{i+1} + \cdots + F_k$$

where $|F_j| = 2$ (edges) for all $j \neq i$ and $|F_i| = 1$ (vertex).

Resultant Extreme Terms

イロト (四) (日) (日) (日) (日) (日)

Theorem [Sturmfels]

Given a regular fine mixed subdivision of $A = A_0 + A_1 + \cdots + A_k$ we get a unique vertex of the Resultant polytope N(R)

- there is a many to one mapping from regular fine mixed subdivisions to vertices of *N*(*R*)
- the construction depends only on *i*-mixed cells

An Algorithm

Outline

イロト (四) (日) (日) (日) (日) (日)

Triangulations, mixed subdivisions, and polynomial systems

- triangulations mixed subdivisions (Cayley trick)
- mixed subdivisions Newton polytope of the Resultant

2 Mixed cell configurations and cubical flips

- · define equivalence classes of mixed subdivisions
- flips between classes of mixed subdivisions

i - Mixed Cells Configurations

Generalizing mixed cells configurations of [MichielsVerschelde99]

Definition

i-mixed cells configurations are the equivalence classes of mixed subdivisions with the same *i*-mixed cells for all $i \in \{0, 1, ..., k\}$.

Proposition

There exist flips that transform one i-mixed cell configuration to another by destroying at least one i-mixed cell.

イロト (四) (日) (日) (日) (日) (日)

i - Mixed Cells Configurations

Generalizing mixed cells configurations of [MichielsVerschelde99]

Definition

i-mixed cells configurations are the equivalence classes of mixed subdivisions with the same *i*-mixed cells for all $i \in \{0, 1, ..., k\}$.

Proposition

There exist flips that transform one i-mixed cell configuration to another by destroying at least one i-mixed cell.

イロト (四) (日) (日) (日) (日) (日)

An example

Cubical Flips

 Let S a regular fine mixed subdivision then S has a cubical flip iff exists a set C ⊆ S of i-mixed cells s.t. C = F₀ + F₁ + · · · + F_k and

$$C = \begin{cases} C_0 = a_0 + F_1 + \dots + F_i + \dots + F_{k-1} + F_k \\ \vdots \\ C_i = F_0 + F_1 + \dots + a_i + \dots + F_{k-1} + F_k \\ \vdots \\ C_k = F_0 + F_1 + \dots + F_i + \dots + F_{k-1} + a_k \end{cases}$$

where $a_i \in F_i \subseteq A_i$, $|a_i| = 1$, $|F_i| = 2$.

• The cubical flip supported on *C* of a subdivision *S* to a subdivision *S*' consist of changing every a_i with $F_i - \{a_i\}$.

Cubical Flips

 Let S a regular fine mixed subdivision then S has a cubical flip iff exists a set C ⊆ S of *i*-mixed cells s.t. C = F₀ + F₁ + ··· + F_k and

$$C' = \begin{cases} C'_{0} = F_{0} - \{a_{0}\} + F_{1} + \dots + F_{i} + \dots + F_{k-1} + F_{k} \\ \vdots \\ C'_{i} = F_{0} + F_{1} + \dots + F_{i} - \{a_{i}\} + \dots + F_{k-1} + F_{k} \\ \vdots \\ C'_{k} = F_{0} + F_{1} + \dots + F_{i} + \dots + F_{k-1} + F_{k} - \{a_{k}\} \end{cases}$$

where $a_i \in F_i \subseteq A_i, |a_i| = 1, |F_i| = 2.$

• The cubical flip supported on *C* of a subdivision *S* to a subdivision *S*' consist of changing every *a_i* with *F_i* - {*a_i*}.

Complexity

supports		# Secondary polytope vertices	<i>i</i> -mixed cell configurations	# Resultant polytope vertices
\bigtriangleup	I	122	98	8
·	••	104148	43018	21
	-	76280	32076	95
		3540	3126	22

i-mixed cell configurations

Secondary Polytope

Resultant extreme terms

Resultant Polytope

Conclusion - Future Work

- # Σ vertices \geq # *i*-mixed cell configurations \geq # N(R) vertices
- Algorithmic test for cubical flips, disconnected graph of cubical flips
- Settle some easy cases
- Wiki page with experiments http://ergawiki.di.uoa.gr/index.php/Implicitization
- Enumerate Resultant polytope vertices
- N(R) is a Minkowski summand of the Secondary polytope [MichielsCools00],[Sturmfels94]
- In some applications (e.g. implicitization) we need to compute only a silhouette w.r.t. a projection of N(R) [EmirisKonaxisPalios07]

Thank You!

