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The volume computation problem

Input: Polytope P := {x ∈ Rd | Ax ≤ b} A ∈ Rm×d, b ∈ Rm

Output: Volume of P

I #-P hard for vertex and for halfspace repres. [DyerFrieze’88]

I open if both vertex & halfspace representation is available

I no deterministic poly-time algorithm can compute the volume
with less than exponential relative error [Elekes’86]

I randomized poly-time algorithm approximates the volume of a
convex body with high probability and arbitrarily small relative
error [DyerFriezeKannan’91] O∗(d23) → O∗(d4) [LovVemp’04]
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Implementations

Exact: VINCI [Bueler et al’00], Latte [deLoera et al], Qhull
[Barber et al], LRS [Avis], Normaliz [Bruns et al]

I triangulation, sign decomposition methods

I cannot compute in high dimensions (e.g. > 20)

Randomized:

I [LovàszDeàk’12] cannot compute in > 10 dimensions

I Matlab code by Cousins & Vempala based on [LovVemp’04]

I Ours: based on [DyerFriezeKannan’91],. . . ,
[KannanLovàszSimon.’97]



How do we compute a random point in a polytope P?

I easy for simple shapes like simplex or cube

I BUT for arbitrary polytopes we need random walks

e.g. grid walk, ball walk, hit-and-run
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Random Directions Hit-and-Run (RDHR)

P
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Input: point x ∈ P and polytope P ⊂ Rd

Output: a new point in P

1. line ` through x, uniform on B(x, 1)

2. set x to be a uniform disrtibuted
point on P ∩ `

Iterate this for W steps and return x.
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Random Directions Hit-and-Run (RDHR)
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`

x Input: point x ∈ P and polytope P ⊂ Rd

Output: a new point in P

1. line ` through x, uniform on B(x, 1)

2. set x to be a uniform disrtibuted
point on P ∩ `

Iterate this for W steps and return x.

I x is unif. random distrib. in P after W = O∗(d3) steps, where
O∗(·) hides log factors [LovaszVempala’06]

I to generate many random points iterate this procedure



Multiphase Monte Carlo (Sequence of balls)

B = B(c, r)

B′ = B(c, ρ)

P

I B(c, 2i/d), i = α,α+ 1, . . . , β,
α = bd log rc, β = dd log ρe

I Pi := P ∩ B(c, 2i/d), i = α,α+ 1, . . . , β,
Pα = B(c, 2α/d) ⊆ B(c, r)



Multiphase Monte Carlo (Generating random points)
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Complexity [KannanLS’97]

Assuming B(c, 1) ⊆ P ⊆ B(c, ρ), the volume algorithm returns an
estimation of vol(P), which lies between (1− ε)vol(P) and
(1+ ε)vol(P) with probability ≥ 3/4, making

O∗(d5)

oracle calls, where ρ is the radius of a bounding ball for P.
Isotropic sandwitching: ρ = O∗(

√
d) and ball walk.

Runtime

I generates d log(ρ) balls

I generate N = 400ε−2d logd random points in each ball ∩P
I each point is computed after O∗(d3) random walk steps



Modifications towards practicality

I W = b10+ d/10c random walk steps (vs. O∗(d3) which hides
constant 1011) achieve < 1% error in up to 100 dim.

I sample partial generations of ≤ N points in each ball ∩P
(starting from the largest ball)

I coordinate (vs. random) directions hit-and-run (CDHR)

I implement boundary oracles with O(m) runtime in CDHR



Iterative rounding

1. compute set S of random points in P

2. compute (approximate) minimum volume ellipsoid E covers S

3. compute L that maps E to the unit ball B and apply L to P
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Efficiently handle skinny polytopes in practice.



Experimental results

I approximate the volume of a series of polytopes (cubes,
random, cross, birkhoff) up to dimension 100 in less than
2 hours with mean approximation error at most 1%

I randomized vs. exact software (VINCI, etc.): there is a
threshold dimension (d < 15) for which exact software halts

I computed value always in [(1− ε)vol(P), (1+ ε)vol(P)] (vs.
prob. 3/4 [KLS’97]) up to d = 100

I CDHR faster and more accurate than RDHR

I Compute the volume of Birkhoff polytopes B11, . . . , B15 in few
hrs whereas exact methods have only computed that of B10 by
specialized software in ∼ 1 year of parallel computation
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Volumes of Birkhoff polytopes

n d estimation
asymptotic estimation

asymptotic
exact

exact
asymptotic[CanfieldMcKay09]

3 4 1.12E+000 1.41E+000 0.7932847 1.13E+000 0.7973923
4 9 6.79E-002 7.61E-002 0.8919349 6.21E-002 0.8159296
5 16 1.41E-004 1.69E-004 0.8344350 1.41E-004 0.8341903
6 25 7.41E-009 8.62E-009 0.8598669 7.35E-009 0.8527922
7 36 5.67E-015 6.51E-015 0.8713891 5.64E-015 0.8665047
8 49 4.39E-023 5.03E-023 0.8729497 4.42E-023 0.8778632
9 64 2.62E-033 2.93E-033 0.8960767 2.60E-033 0.8874117

10 81 8.14E-046 9.81E-046 0.8305162 8.78E-046 0.8955491
11 100 1.40E-060 1.49E-060 0.9342584 ??? ???
12 121 7.85E-078 8.38E-078 0.9370513 ??? ???
13 144 1.33E-097 1.43E-097 0.9331517 ??? ???
14 169 5.96E-120 6.24E-120 0.9550089 ??? ???
15 196 5.70E-145 5.94E-145 0.9593786 ??? ???



Ongoing work

1. random walks for polytopes described by optimization oracles
e.g. resultant polytopes [Emiris,F,Konaxis,Penaranda SoCG’12]

2. use approximate oracles (utilizing approximate NN)

3. volume of more general convex bodies
e.g. spectahedra



Conclusion

I Practical volume estimation in high dimensions (e.g. 100)

I Software framework for testing theoretical ideas (e.g. new
geometric random walks)

Code

I http://sourceforge.net/projects/randgeom

http://sourceforge.net/projects/randgeom
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