Efficient Random-Walk Methods for Approximating Polytope Volume

Vissarion Fisikopoulos

Joint work with I.Z. Emiris

Dept. of Informatics & Telecommunications, University of Athens Visiting Scholar at NIMS, South Korea

SoCG 10 Jun. 2014

Input: Polytope P := { $x \in \mathbb{R}^d | Ax \le b$ } $A \in \mathbb{R}^{m \times d}$, $b \in \mathbb{R}^m$

Output: Volume of P

▶ #-P hard for vertex and for halfspace repres. [DyerFrieze'88]

Input: Polytope $P := \{x \in \mathbb{R}^d \mid Ax \leq b\} \ A \in \mathbb{R}^{m \times d}, \ b \in \mathbb{R}^m$

Output: Volume of P

- ► #-P hard for vertex and for halfspace repres. [DyerFrieze'88]
- open if both vertex & halfspace representation is available

Input: Polytope $P := \{x \in \mathbb{R}^d \mid Ax \leq b\} \ A \in \mathbb{R}^{m \times d}, \ b \in \mathbb{R}^m$

Output: Volume of P

- ► #-P hard for vertex and for halfspace repres. [DyerFrieze'88]
- open if both vertex & halfspace representation is available
- no deterministic poly-time algorithm can compute the volume with less than exponential relative error [Elekes'86]

Input: Polytope $P := \{x \in \mathbb{R}^d \mid Ax \leq b\} \ A \in \mathbb{R}^{m \times d}, \ b \in \mathbb{R}^m$

Output: Volume of P

- ► #-P hard for vertex and for halfspace repres. [DyerFrieze'88]
- open if both vertex & halfspace representation is available
- no deterministic poly-time algorithm can compute the volume with less than exponential relative error [Elekes'86]
- randomized poly-time algorithm approximates the volume of a convex body with high probability and arbitrarily small relative error [DyerFriezeKannan'91] O*(d²³) → O*(d⁴) [LovVemp'04]

Implementations

Exact: VINCI [Bueler et al'00], Latte [deLoera et al], Qhull [Barber et al], LRS [Avis], Normaliz [Bruns et al]

- triangulation, sign decomposition methods
- cannot compute in high dimensions (e.g. > 20)

Randomized:

- [LovàszDeàk'12] cannot compute in > 10 dimensions
- Matlab code by Cousins & Vempala based on [LovVemp'04]
- Ours: based on [DyerFriezeKannan'91],..., [KannanLovàszSimon.'97]

How do we compute a random point in a polytope P?

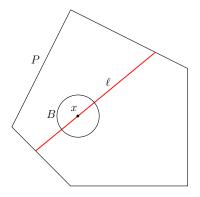
easy for simple shapes like simplex or cube

How do we compute a random point in a polytope P?

easy for simple shapes like simplex or cube

BUT for arbitrary polytopes we need random walks
e.g. grid walk, ball walk, hit-and-run

Random Directions Hit-and-Run (RDHR)

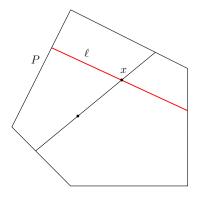


Input: point $x \in P$ and polytope $P \subset \mathbb{R}^d$ Output: a new point in P

- 1. line ℓ through x, uniform on B(x,1)
- 2. set x to be a uniform disrtibuted point on $P \cap \ell$

Iterate this for W steps and return x.

Random Directions Hit-and-Run (RDHR)



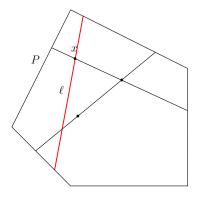
Input: point $x \in P$ and polytope $P \subset \mathbb{R}^d$ Output: a new point in P

1. line ℓ through x, uniform on B(x,1)

2. set x to be a uniform disrtibuted point on $P \cap \ell$

Iterate this for W steps and return x.

Random Directions Hit-and-Run (RDHR)



Input: point $x \in P$ and polytope $P \subset \mathbb{R}^d$ Output: a new point in P

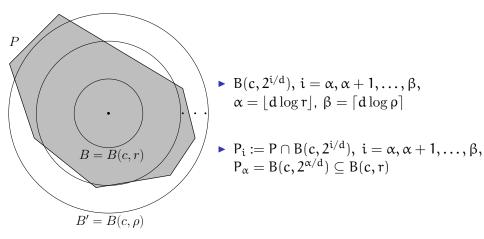
- 1. line ℓ through x, uniform on B(x,1)
- 2. set x to be a uniform disrtibuted point on $P \cap \ell$

Iterate this for W steps and return x.

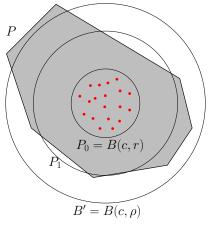
➤ x is unif. random distrib. in P after W = O*(d³) steps, where O*(·) hides log factors [LovaszVempala'06]

to generate many random points iterate this procedure

Multiphase Monte Carlo (Sequence of balls)



Multiphase Monte Carlo (Generating random points)



$$B(c, 2^{i/d}), i = \alpha, \alpha + 1, \dots, \beta, \alpha = \lfloor d \log r \rfloor, \beta = \lceil d \log \rho \rceil$$

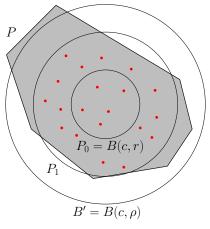
$$P_i := P \cap B(c, 2^{i/d}), \ i = \alpha, \alpha + 1, \dots, \beta, P_\alpha = B(c, 2^{\alpha/d}) \subseteq B(c, r)$$

1. Generate rand. points in P_i

2. Count how many rand. points in P_i fall in P_{i-1}

$$vol(P) = vol(P_{\alpha}) \prod_{i=\alpha+1}^{\beta} \frac{vol(P_i)}{vol(P_{i-1})}$$

Multiphase Monte Carlo (Generating random points)



$$B(c, 2^{i/d}), i = \alpha, \alpha + 1, \dots, \beta,$$
$$\alpha = \lfloor d \log r \rfloor, \beta = \lceil d \log \rho \rceil$$

$$\begin{array}{l} \blacktriangleright \ P_{i} := P \cap B(c, 2^{\iota/d}), \ i = \alpha, \alpha + 1, \ldots, \beta, \\ P_{\alpha} = B(c, 2^{\alpha/d}) \subseteq B(c, r) \end{array}$$

1. Generate rand. points in P_i

2. Count how many rand. points in P_i fall in P_{i-1}

$$\operatorname{vol}(P) = \operatorname{vol}(P_{\alpha}) \prod_{i=\alpha+1}^{\beta} \frac{\operatorname{vol}(P_{i})}{\operatorname{vol}(P_{i-1})}$$

Complexity [KannanLS'97]

Assuming $B(c, 1) \subseteq P \subseteq B(c, \rho)$, the volume algorithm returns an estimation of vol(P), which lies between $(1 - \epsilon)vol(P)$ and $(1 + \epsilon)vol(P)$ with probability $\geq 3/4$, making

 $O^{\ast}(d^{5})$

oracle calls, where ρ is the radius of a bounding ball for P. Isotropic sandwitching: $\rho=O^*(\sqrt{d})$ and ball walk.

Runtime

- generates $d \log(\rho)$ balls
- ▶ generate $N = 400 e^{-2} d \log d$ random points in each ball $\cap P$
- each point is computed after O^{*}(d³) random walk steps

Modifications towards practicality

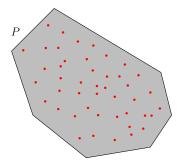
▶ $W = \lfloor 10 + d/10 \rfloor$ random walk steps (vs. $O^*(d^3)$ which hides constant 10^{11}) achieve < 1% error in up to 100 dim.

 sample partial generations of ≤ N points in each ball ∩ P (starting from the largest ball)

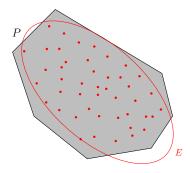
coordinate (vs. random) directions hit-and-run (CDHR)

• implement boundary oracles with O(m) runtime in CDHR

 $1. \ \mbox{compute set } S \ \mbox{of random points in } P$

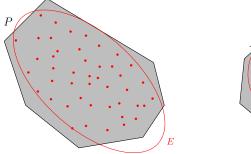


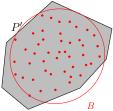
- $1. \ \mbox{compute set } S \ \mbox{of random points in } P$
- 2. compute (approximate) minimum volume ellipsoid E covers S



- 1. compute set S of random points in ${\sf P}$
- 2. compute (approximate) minimum volume ellipsoid E covers S
- 3. compute L that maps E to the unit ball B and apply L to P

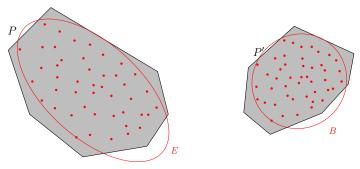
Iterate until the ratio of the maximum over the minumum ellipsoid axis reaches some user-defined threshold.





- 1. compute set S of random points in P
- 2. compute (approximate) minimum volume ellipsoid E covers S
- 3. compute L that maps E to the unit ball B and apply L to P

Iterate until the ratio of the maximum over the minumum ellipsoid axis reaches some user-defined threshold.



Efficiently handle skinny polytopes in practice.

approximate the volume of a series of polytopes (cubes, random, cross, birkhoff) up to dimension 100 in less than 2 hours with mean approximation error at most 1%

- approximate the volume of a series of polytopes (cubes, random, cross, birkhoff) up to dimension 100 in less than 2 hours with mean approximation error at most 1%
- randomized vs. exact software (VINCI, etc.): there is a threshold dimension (d < 15) for which exact software halts

- approximate the volume of a series of polytopes (cubes, random, cross, birkhoff) up to dimension 100 in less than 2 hours with mean approximation error at most 1%
- randomized vs. exact software (VINCI, etc.): there is a threshold dimension (d < 15) for which exact software halts
- ► computed value always in [(1 ε)vol(P), (1 + ε)vol(P)] (vs. prob. 3/4 [KLS'97]) up to d = 100

- approximate the volume of a series of polytopes (cubes, random, cross, birkhoff) up to dimension 100 in less than 2 hours with mean approximation error at most 1%
- randomized vs. exact software (VINCI, etc.): there is a threshold dimension (d < 15) for which exact software halts
- ► computed value always in [(1 ε)vol(P), (1 + ε)vol(P)] (vs. prob. 3/4 [KLS'97]) up to d = 100
- CDHR faster and more accurate than RDHR

- approximate the volume of a series of polytopes (cubes, random, cross, birkhoff) up to dimension 100 in less than 2 hours with mean approximation error at most 1%
- randomized vs. exact software (VINCI, etc.): there is a threshold dimension (d < 15) for which exact software halts
- ► computed value always in [(1 ε)vol(P), (1 + ε)vol(P)] (vs. prob. 3/4 [KLS'97]) up to d = 100
- CDHR faster and more accurate than RDHR
- Compute the volume of Birkhoff polytopes B₁₁,..., B₁₅ in few hrs whereas exact methods have only computed that of B₁₀ by specialized software in ~ 1 year of parallel computation

Volumes of Birkhoff polytopes

n	d	estimation	asymptotic	estimation	exact	exact
			[CanfieldMcKay09]	asymptotic		asymptotic
3	4	1.12E+000	1.41E+000	0.7932847	1.13E+000	0.7973923
4	9	6.79E-002	7.61E-002	0.8919349	6.21E-002	0.8159296
5	16	1.41E-004	1.69E-004	0.8344350	1.41E-004	0.8341903
6	25	7.41E-009	8.62E-009	0.8598669	7.35E-009	0.8527922
7	36	5.67E-015	6.51E-015	0.8713891	5.64E-015	0.8665047
8	49	4.39E-023	5.03E-023	0.8729497	4.42E-023	0.8778632
9	64	2.62E-033	2.93E-033	0.8960767	2.60E-033	0.8874117
10	81	8.14E-046	9.81E-046	0.8305162	8.78E-046	0.8955491
11	100	1.40E-060	1.49E-060	0.9342584	???	???
12	121	7.85E-078	8.38E-078	0.9370513	???	???
13	144	1.33E-097	1.43E-097	0.9331517	???	???
14	169	5.96E-120	6.24E-120	0.9550089	???	???
15	196	5.70E-145	5.94E-145	0.9593786	???	???

Ongoing work

- 1. random walks for polytopes described by optimization oracles e.g. resultant polytopes [Emiris,F,Konaxis,Penaranda SoCG'12]
- 2. use approximate oracles (utilizing approximate NN)
- 3. volume of more general convex bodies e.g. spectahedra

Conclusion

- Practical volume estimation in high dimensions (e.g. 100)
- Software framework for testing theoretical ideas (e.g. new geometric random walks)

Code

http://sourceforge.net/projects/randgeom

Conclusion

- Practical volume estimation in high dimensions (e.g. 100)
- Software framework for testing theoretical ideas (e.g. new geometric random walks)

Code

http://sourceforge.net/projects/randgeom

THANK YOU