High-dimensional polytopes defined by oracles: algorithms, computations and applications

Vissarion Fisikopoulos

Dept. of Informatics & Telecommunications, University of Athens

PhD defence, Athens, 24.Apr.2014

Algorithm for resultant polytopes

Edge-skeleton

ton Volume 00000 4-d resultant polyto

Predicates

Classical Polytope Representations

A convex polytope $P\subseteq \mathbb{R}^d$ can be represented as the

- 1. convex hull of a pointset $\{p_1,\ldots,p_n\}$ (V-representation)
- 2. intersection of halfspaces $\{h_1, \ldots, h_m\}$ (H-representation)

• These problems are equivalent by polytope duality.

Algorithm for resultant polytopes

Edge-skeleton

Volume 00000000 4-d resultant poly

Predicates 00000000

Algorithmic Issues

 For general dimension d there is no polynomial algorithm for the convex hull (or vertex enumeration) problem since m can be O (n^{Ld/2}) [McMullen'70].

• It is open whether there exist a total poly-time algorithm for the convex hull (or vertex enumeration) problem, *i.e. runs in poly-time in* n, m, d.

Algorithm for resultant polytopes

Edge-skeleton

/olume

⊢d resultant polyto ⊃ooooooo Predicates 00000000

What is an Oracle?

Algorithm for resultant polytopes

Edge-skeleton

Volume 00000000

4-d resultant

lytopes Pred 000

Polytope Oracles

Implicit representation for a polytope $P \subseteq \mathbb{R}^d$.

- $\label{eq:opt_p} \mathsf{OPT}_{\mathsf{P}} \text{: Given direction } c \in \mathbb{R}^d \text{ return the vertex } \nu \in \mathsf{P} \text{ that maximizes } \\ c^\mathsf{T}\nu.$
- $$\begin{split} \mathsf{SEP}_P &: \text{ Given point } y \in \mathbb{R}^d \text{, return yes if } y \in P \text{ otherwise a} \\ \text{ hyperplane } h \text{ that separates } y \text{ from } P. \end{split}$$

Algorithm for resultant polytopes 000000000 Edge-skeleton

olume

4-d resultant polyt

Predicates 00000000

Why polytope Oracles?

- Polynomial time algorithms for combinatorial optimization problems using the ellipsoid method [Grötschel-Lovász-Schrijver'93]
- Randomized polynomial-time algorithms for approximating the volume of convex bodies [Dyer-Frieze-Kannan '90],...,[Lovász-Vempala '04]

Algorithm for resultant polytopes

Edge-skeleton

olume 0000000 4-d resultant polyt

Predicates 00000000

Our view of the Oracles

Resultant, Discriminant, Secondary polytopes

- Vertices → subdivisions of a pointset's convex hull
- OPT_P is available via a subdivision computation

• Applications in Computational Algebraic Geometry, Geometric Modelling, Optimization, Combinatorics

Algorithm for resultant polytopes

dge-skeleton

Volume 0000000 4-d resultant | 00000000 Predicates 00000000

Outline

Introduction

An algorithm for computing projections of resultant polytopes

Edge-skeleton computation for polytopes defined by oracles

A practical volume algorithm for high dimensional polytopes

Combinatorics of 4-d resultant polytopes

High-dimensional predicates: algorithms and software

Algorithm for resultant polytopes •0000000

dge-skeleton 000000 Volume 00000000 4-d resultant

Predicates

Outline

Introduction

An algorithm for computing projections of resultant polytopes

Edge-skeleton computation for polytopes defined by oracles

A practical volume algorithm for high dimensional polytopes

Combinatorics of 4-d resultant polytopes

High-dimensional predicates: algorithms and software

Algorithm for resultant polytopes

Edge-skeleton

Volume 000000 4-d resultant polyto

Predicates 00000000

Main actor: resultant polytope

- Geometry: Minkowski summands of secondary polytopes, generalize Birkhoff polytopes
- Algebra: resultant expresses the solvability of polynomial systems
- Applications: resultant computation, implicitization of parametric hypersurfaces [Emiris, Kalinka, Konaxis, LuuBa '12]

Enneper's Minimal Surface

Edge-skeleton

ume 000000 -d resultant polytop

Predicates 00000000

Polytopes and Algebra

• Given n + 1 polynomials on n variables.

$$f_0(x) = ax^2 + b$$

$$f_1(x) = cx^2 + dx + e$$

Algorithm for resultant polytopes

dge-skeleton 000000 olume 4

-d resultant polytop

Predicates 00000000

Polytopes and Algebra

- Given n + 1 polynomials on n variables.
- Supports (set of exponents of monomials with non-zero coefficient) A₀, A₁,..., A_n ⊂ Zⁿ.

$$f_0(x) = ax^2 + b \qquad A_0 \qquad \bullet - - - \bullet$$

$$f_1(x) = cx^2 + dx + e \qquad A_1 \qquad \bullet - \bullet - \bullet$$

dge-skeleton 000000 Volume 00000000 4-d resultant poly

Predicates 00000000

Polytopes and Algebra

- Given n + 1 polynomials on n variables.
- Supports (set of exponents of monomials with non-zero coefficient) A₀, A₁,..., A_n ⊂ Zⁿ.
- The resultant R is the polynomial in the coefficients of a system of polynomials which vanishes if there exists a common root in the torus of the given polynomials.

$$f_0(x) = ax^2 + b \qquad A_0 \qquad \bullet - - - \bullet$$

$$f_1(x) = cx^2 + dx + e \qquad A_1 \qquad \bullet - \bullet - \bullet$$

$$R(a,b,c,d,e) = ad^2b + c^2b^2 - 2caeb + a^2e^2$$

Algorithm for resultant polytopes

Edge-skeleton

Volume 00000000 4-d resultant polyto

Predicates 00000000

Polytopes and Algebra

- Given n + 1 polynomials on n variables.
- Supports (set of exponents of monomials with non-zero coefficient) A₀, A₁,..., A_n ⊂ Zⁿ.
- The resultant R is the polynomial in the coefficients of a system of polynomials which vanishes if there exists a common root in the torus of the given polynomials.
- The resultant polytope N(R), is the convex hull of the support of R, i.e. the Newton polytope of the resultant.

$$f_0(x) = ax^2 + b \qquad A_0 \qquad \bullet - - - \bullet$$

$$f_1(x) = cx^2 + dx + e \qquad A_1 \qquad \bullet - \bullet - \bullet$$

$$R(a,b,c,d,e) = ad^2b + c^2b^2 - 2caeb + a^2e^2$$

N(R)

Algorithm for resultant polytopes

Edge-skeleton

Volume 00000000 4-d resultant poly

Predicates

Mixed subdivisions

A subdivision S of Minkowski sum $A_0 + A_1 + \cdots + A_n$ is

- mixed: cells are Minkowski sums of subsets of A_i 's,
- fine: for each cell $\sigma = \sigma_0 + \dots + \sigma_n$, $\dim(\sigma) = \sum_{i=0}^n \dim(\sigma_i)$

fine mixed subdivision S of $A_0 + A_1 + A_2$

Algorithm for resultant polytopes

Edge-skeleton

olume 0000000 -d resultant polyto

Predicates 00000000

Resultant polytope vertices

Theorem [GKZ'94, Sturmfels'94]

- many-to-one relation from regular fine mixed subdivisions of A₀ + ··· + A_n to N(R) vertices
- one-to-one relation between regular fine mixed subdivisions and secondary polytope Σ vertices

Algorithm for resultant polytopes

Edge-skeleton

Volume 0000000 4-d resultant po

Predicates 00000000

The idea of the algorithm

Input: $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ Simplistic method:

- compute the vertices of secondary polytope Σ [Rambau '02]
- many-to-one relation between vertices of Σ and N(R)

Algorithm for resultant polytopes

Edge-skeleton

Volume

4-d resultant p

Predicates

The idea of the algorithm

Input: $A_0, A_1, \dots, A_n \subset \mathbb{Z}^n$ New Algorithm:

- Optimization oracle for N(R) by subdivision computation
- Output sensitive: 1 subd. per N(R) vertex + 1 per N(R) facet
- Computes projections of N(R), Σ

Algorithm for resultant polytopes

Edge-skeleton

Volume

4-d resultant po

Predicates

The Algorithm

- incremental
- first: compute conv.hull of d+1 aff. indep. vertices of $\mathsf{N}(\mathsf{R})$
- step: call the oracle with outer normal vector of a halfspace
 → either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull

Algorithm for resultant polytopes

Edge-skeleton

Volume 0000000 4-d resultant p

Predicates 00000000

The Algorithm

- incremental
- first: compute conv.hull of d+1 aff. indep. vertices of N(R)
- step: call the oracle with outer normal vector of a halfspace
 → either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull

Theorem

H-, V-repr. & triang. T of N(R) can be computed in

 $O(d^5 n s^2)$ arithmetic operations $\,+\,O(n+m)$ oracle calls

n, m, s are the number of vertices, facets of N(R), cells of T resp.

Algorithm for resultant polytopes

Edge-skeleton

Volume 0000000 4-d resultant po

Predicates 00000000

The Algorithm

- incremental
- first: compute conv.hull of d+1 aff. indep. vertices of N(R)
- step: call the oracle with outer normal vector of a halfspace
 → either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull

Theorem

H-, V-repr. & triang. T of N(R) can be computed in

 $O(d^5 n s^2)$ arithmetic operations $\,+\,O(n+m)$ oracle calls

n, m, s are the number of vertices, facets of N(R), cells of T resp. BUT: s can be $O(n^{\lfloor d/2 \rfloor})$

Algorithm for resultant polytopes

Edge-skeleton

Volume

4-d resultant 00000000 oes Predica 00000

ResPol package

• C++

- Towards high-dimensional
- Propose hashing of determinantal predicates scheme: optimizing sequences of similar determinants (x100 speed-up)
- Computes 5-, 6- and 7-dimensional polytopes with 35K, 23K and 500 vertices, respectively, within 2hrs
- Computes polytopes of many important surface equations encountered in geometric modeling in < 1sec, whereas the corresponding secondary polytopes are intractable

Algorithm for resultant polytopes 00000000

Edge-skeleton

Volume

4-d resultant

Predicates 00000000

References

• Emiris, F, Konaxis, Peñaranda An output-sensitive algorithm for computing projections of resultant polytopes. Proc. of 28th ACM Annual Symposium on Computational Geometry, 2012, Chapel Hill, NC, USA.

• Emiris, F, Konaxis, Peñaranda An oracle-based, output sensitive algorithm for projections of resultant polytopes. International Journal of Computational Geometry and Applications (Special issue) World Scientific.

Algorithm for resultant polytopes

Edge-skeleton

/olume 00000000 -d resultant polyto

Predicates 00000000

Outline

Introduction

An algorithm for computing projections of resultant polytopes

Edge-skeleton computation for polytopes defined by oracles

A practical volume algorithm for high dimensional polytopes

Combinatorics of 4-d resultant polytopes

High-dimensional predicates: algorithms and software

Algorithm for resultant polytopes

Edge-skeleton

Volume 00000000 4-d resultant polytope 00000000 Predicates

Vertex enumeration with edge-directions

Given OPT_P and a superset D of the edge directions D(P) of $P\subseteq \mathbb{R}^d,$ compute the vertices P.

Proposition (Rothblum, Onn '07)

Let $P\subseteq \mathbb{R}^d$ given by $OPT_P,$ and $D\supseteq D(P).$ All vertices of P can be computed in

 $O(|D|^{d-1})$ calls to $\mathsf{OPT}_P + O(|D|^{d-1})$ arithmetic operations.

Algorithm for resultant polytopes

Edge-skeleton

Volume 00000000 4-d resultant polytop 00000000 Predicates 00000000

Well-described polytopes and oracles

Definition

A polytope $P\subseteq \mathbb{R}^d$ is well-described (with a parameter ϕ) if there exists an H-representation for P in which every inequality has encoding length at most ϕ . The encoding length of P is $\langle P\rangle=d+\phi.$

Proposition (Grötschel et al.'93)

For a well-described polytope, we can compute OPT_P from SEP_P (and vice versa) in oracle polynomial-time. The runtime (polynomially) depends on d and φ .

l resultant polytopes

Predicates 00000000

The edge-skeleton algorithm

Input:

- OPT_P
- Edge vec. P (dir. & len.): D

Output:

• Edge-skeleton of P

Sketch of Algorithm:

- Compute a vertex of P (x = OPT_P(c) for arbitrary $c^{\mathsf{T}} \in \mathbb{R}^d)$

Edge-skeleton 0000000

The edge-skeleton algorithm

Input:

- OPT_P
- Edge vec. P (dir. & len.): D

Output:

Edge-skeleton of P

Sketch of **Algorithm**:

- Compute a vertex of P ($x = OPT_P(c)$ for arbitrary $c^T \in \mathbb{R}^d$)
- Compute segments $S = \{(x, x + d), \text{ for all } d \in D\}$ •

 Introduction
 Algorithm for resultant polytopes
 Edge-skeleton
 Volume
 4-d resultant polytopes

 0000000
 00000000
 00000000
 00000000
 00000000
 00000000

The edge-skeleton algorithm

Input:

- **OPT**_P
- Edge vec. P (dir. & len.): D

Output:

• Edge-skeleton of P

Sketch of Algorithm:

- Compute a vertex of P ($x = OPT_P(c)$ for arbitrary $c^T \in \mathbb{R}^d$)
- Compute segments $S = \{(x, x + d), \text{ for all } d \in D\}$
- Remove from S all segments (x, y) s.t. $y \notin P$ (OPT_P \rightarrow SEP_P)

The edge-skeleton algorithm

Input:

- OPT_P
- Edge vec. P (dir. & len.): D

Output:

Edge-skeleton of P

Sketch of **Algorithm**:

- Compute a vertex of P ($x = OPT_P(c)$ for arbitrary $c^T \in \mathbb{R}^d$)
- Compute segments $S = \{(x, x + d), \text{ for all } d \in D\}$
- Remove from S all segments (x, y) s.t. $y \notin P$ (OPT_P \rightarrow SEP_P)
- Remove from S the segments that are not extreme

4-d resultant polyto

Predicates 00000000

The edge-skeleton algorithm

Input:

- **OPT**_P
- Edge vec. P (dir. & len.): D

Output:

• Edge-skeleton of P

Sketch of Algorithm:

- Compute a vertex of P ($x = \text{OPT}_{\text{P}}(c)$ for arbitrary $c^{\text{T}} \in \mathbb{R}^d)$
- Compute segments $S=\{(x,x+d), \text{ for all } d\in D\}$
- Remove from S all segments (x, y) s.t. $y \notin P$ (OPT_P \rightarrow SEP_P)
- \bullet Remove from S the segments that are not extreme

Can be altered to work with edge directions only

Algorithm for resultant polytopes

Edge-skeleton

Volume 0000000 4-d resultant po

Predicates

Complexity

Theorem

Given OPT_P and a superset of edge directions D of a well-described polytope $P \subseteq \mathbb{R}^d$, the edge skeleton of P can be computed in oracle total polynomial-time

$$O\left(n|D|\left(T + \mathbb{LP}(d^3|D|\langle B \rangle) + d\log n\right)\right),$$

- n the number of vertices of P,
- T : runtime of oracle conversion algorithm for P and D,
- $\langle B \rangle$ is the binary encoding length of the vector set P and D,
- $\mathbb{LP}(\langle A \rangle + \langle b \rangle + \langle c \rangle)$ runtime of max $c^T x$ over $\{x : Ax \le b\}$.

Algorithm for resultant polytopes

Edge-skeleton

Volume 00000000 4-d resultant poly 0000000

Predicates 00000000

Applications

Corollary

The edge skeleton of resultant, secondary polytopes can be computed in oracle total polynomial-time.

Corollary

The edge skeletons of polytopes appearing in convex combinatorial optimization [Rothblum-Onn '04] and convex integer programming [De Loera et al. '09] problems can be computed in oracle total polynomial-time.

IntroductionAlgorithm for resultant polytopesEdge-skeletonVolume00000000000000000000000000000000000000

4-d resulta

resultant polytopes

Predicates 00000000

References

• Emiris, F, Gärtner Efficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles. Proc. of 29th European Workshop on Computational Geometry, Braunschweig, Germany 2013.

• Emiris, F, Gärtner Efficient edge skeleton computation for polytopes defined by oracles. Submitted to Computational Geometry - Theory and Applications.

ntroduction Alge

lgorithm for resultant polytopes

Edge-skeleton 0000000 Volume ●0000000 4-d resultant poly 00000000 Predicates

Outline

Introduction

An algorithm for computing projections of resultant polytopes

Edge-skeleton computation for polytopes defined by oracles

A practical volume algorithm for high dimensional polytopes

Combinatorics of 4-d resultant polytopes

High-dimensional predicates: algorithms and software

Introduction	Algorithm for resultant polytopes	Edge-skeleton	Volume	4-d resultant polytopes	Predic
		0000000	0000000		

The volume computation problem

Input: Polytope $P:=\{x\in \mathbb{R}^d \mid Ax\leq b\}\; A\in \mathbb{R}^{m\times d},\; b\in \mathbb{R}^m$

Output: Volume of P

• #-P hard for vertex and for halfspace repres. [DyerFrieze'88]
ntroduction	Algorithm for resultant polytopes	Edge-skeleton	Volume	4-d resultant polytopes	Predicat
		0000000	0000000		

The volume computation problem

Input: Polytope $P:=\{x\in \mathbb{R}^d \mid Ax\leq b\}\; A\in \mathbb{R}^{m\times d},\; b\in \mathbb{R}^m$

Output: Volume of P

- #-P hard for vertex and for halfspace repres. [DyerFrieze'88]
- randomized poly-time algorithm approximates the volume of a convex body with high probability and arbitrarily small relative error [DyerFriezeKannan'91] $O^*(d^{23}) \rightarrow O^*(d^4)$ [LovVemp'04]

ntroduction	Algorithm for resultant polytopes	Edge-skeleton	Volume	4-d resultant polytopes	Predica
		0000000	0000000		00000

The volume computation problem

Input: Polytope $P:=\{x\in \mathbb{R}^d \mid Ax\leq b\}\; A\in \mathbb{R}^{m\times d},\; b\in \mathbb{R}^m$

Output: Volume of P

- #-P hard for vertex and for halfspace repres. [DyerFrieze'88]
- randomized poly-time algorithm approximates the volume of a convex body with high probability and arbitrarily small relative error [DyerFriezeKannan'91] $O^*(d^{23}) \rightarrow O^*(d^4)$ [LovVemp'04]

Implementations

- Exact (VINCI, Qhull, etc.) cannot compute in high dimensions (e.g. > 20)
- Randomized ([CousinsVempala'14], [EmirisF'14]) compute in high dimensions (e.g. 100)

Algorithm for resultant polytopes

Edge-skeleton

Volume

-d resultant polytop

Predicates 00000000

How do we compute a random point in a polytope P?

• easy for simple shapes like simplex or cube

lgorithm for resultant polytopes

Edge-skeleton

Volume 00●00000 -d resultant polytop

Predicates 00000000

How do we compute a random point in a polytope P?

- easy for simple shapes like simplex or cube
- BUT for arbitrary polytopes we need random walks

Algorithm for resultant polytopes

Edge-skeleton

Volume

d resultant polytopes

Predicates

Random Directions Hit-and-Run (RDHR)

Input: point $x \in P$ Output: new point $x' \in P$

1. line ℓ through x, uniform on B(x, 1)

2. set x' to be a uniform disrtibuted point on $P \cap \ell$

Iterate this for W steps.

Algorithm for resultant polytopes

Edge-skeleton

Volume

d resultant polytopes

Predicates

Random Directions Hit-and-Run (RDHR)

Input: point $x \in P$ Output: new point $x' \in P$

1. line ℓ through x, uniform on B(x, 1)

2. set x' to be a uniform disrtibuted point on $P \cap \ell$

Iterate this for W steps.

Algorithm for resultant polytopes

Edge-skeleton

Volume

d resultant polytopes

Predicates 00000000

Random Directions Hit-and-Run (RDHR)

Input: point $x \in P$

Output: new point $x' \in P$

- 1. line ℓ through x, uniform on B(x,1)
- 2. set x' to be a uniform disrtibuted point on $P \cap \ell$

Iterate this for W steps.

• x' is unif. random distrib. in P after $W = O^*(d^3)$ steps, where $O^*(\cdot)$ hides log factors [LovaszVempala'06]

• to generate many random points iterate this procedure

Algorithm for resultant polytopes

Edge-skeleton

Volume

<mark>1-d resultant polytope</mark> 00000000 Predicates 00000000

Multiphase Monte Carlo (Sequence of balls)

•
$$B(c, 2^{i/d}), i = \alpha, \alpha + 1, \dots, \beta,$$

 $\alpha = \lfloor d \log r \rfloor, \beta = \lceil d \log \rho \rceil$

•
$$P_i := P \cap B(c, 2^{i/d}), i = \alpha, \alpha + 1, \dots, \beta$$

 $P_\alpha = B(c, 2^{\alpha/d}) \subseteq B(c, r)$

Multiphase Monte Carlo (Generate/count random points)

•
$$B(c, 2^{i/d}), i = \alpha, \alpha + 1, \dots, \beta,$$

 $\alpha = \lfloor d \log r \rfloor, \beta = \lceil d \log \rho \rceil$

•
$$P_i := P \cap B(c, 2^{i/d}), i = \alpha, \alpha + 1, \dots, \beta,$$

 $P_{\alpha} = B(c, 2^{\alpha/d}) \subseteq B(c, r)$

- 1. Generate rand. points in P_i
- 2. Count how many rand. points in P_i fall in P_{i-1}

$$vol(P) = vol(P_{\alpha}) \prod_{i=\alpha+1}^{\beta} \frac{vol(P_i)}{vol(P_{i-1})}$$

Multiphase Monte Carlo (Generate/count random points)

•
$$B(c, 2^{i/d}), i = \alpha, \alpha + 1, \dots, \beta,$$

 $\alpha = \lfloor d \log r \rfloor, \beta = \lceil d \log \rho \rceil$

•
$$P_i := P \cap B(c, 2^{i/d}), i = \alpha, \alpha + 1, \dots, \beta,$$

 $P_{\alpha} = B(c, 2^{\alpha/d}) \subseteq B(c, r)$

- 1. Generate rand. points in P_i
- 2. Count how many rand. points in P_i fall in P_{i-1}

$$vol(P) = vol(P_{\alpha}) \prod_{i=\alpha+1}^{\beta} \frac{vol(P_{i})}{vol(P_{i-1})}$$

Introduction	Algorithm for resultant polytopes	Edge-skeleton	Volume	4-d resultant polytopes	Predicates
		0000000	00000000		

Contributions

Some modifications towards practicality

- $W = \lfloor 10 + d/10 \rfloor$ random walk steps (vs. $O^*(d^3)$ which hides constant 10^{11}) achieve < 1% error in up to 100 dim.
- implement boundary oracles with O(m) runtime in coordinate (vs. random) directions hit-and-run

 ntroduction
 Algorithm for resultant polytopes
 Edge-skeleton
 Volume
 4-d resultant polytopes
 Predicat

 0000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000

Contributions

Some modifications towards practicality

- $W = \lfloor 10 + d/10 \rfloor$ random walk steps (vs. $O^*(d^3)$ which hides constant 10^{11}) achieve < 1% error in up to 100 dim.
- implement boundary oracles with O(m) runtime in coordinate (vs. random) directions hit-and-run

Highlights of experimental results

- approximate the volume of a series of polytopes (cubes, random, cross, Birkhoff) for d<100 in $<\!2$ hrs with mean approximation error $<\!1\%$
- Compute the volume of Birkhoff polytopes B_{11},\ldots,B_{15} in few hrs whereas exact methods have only computed that of B_{10} by specialized software in ~ 1 year of parallel computation

Introduction 0000000	Algorithm for resultant polytopes	Edge-skeleton	Volume 0000000●	4-d resultant polytopes	Predicates 0000000

References

• Emiris, F. Efficient random-walk methods for approximating polytope volume. Proc. of 30th ACM Annual Symposium on Computational Geometry, 2014, Kyoto, Japan.

 Introduction
 Algorithm for resultant polytopes
 Edge-skeleton
 Volum

 0000000
 00000000
 0000000
 000000

me 4-d r 00000 ●00

4-d resultant polytopes •0000000 Predicates

Outline

Introduction

An algorithm for computing projections of resultant polytopes

Edge-skeleton computation for polytopes defined by oracles

A practical volume algorithm for high dimensional polytopes

Combinatorics of 4-d resultant polytopes

High-dimensional predicates: algorithms and software

Introduction

Algorithm for resultant polytopes

Edge-skeleton

Volume 00000000 4-d resultant polytopes ○●○○○○○○ Predicates 00000000

Existing work

+ [GKZ'90] Univariate case / general dimensional N(R)

Algorithm for resultant polytopes

Edge-skeleton

Volume 0000000 4-d resultant polytopes ○●○○○○○○ Predicates 00000000

Existing work

+ [GKZ'90] Univariate case / general dimensional N(R)

• [Sturmfels'94] Multivariate case / up to 3 dimensional N(R)

Algorithm for resultant polytopes

Edge-skeleton

/olume 00000000 4-d resultant polytopes 0000000

Predicates 00000000

One step beyond... 4-dimensional N(R)

• Polytope $P\subseteq \mathbb{R}^4;$ f-vector is the vector of its face cardinalities.

Algorithm for resultant polytopes

Edge-skeleton

Volume 00000000 4-d resultant polytopes 000000

Predicates 00000000

One step beyond... 4-dimensional N(R)

- Polytope $P\subseteq \mathbb{R}^4;$ f-vector is the vector of its face cardinalities.
- Call vertices, edges, ridges, facets, the 0,1,2,3-d, faces of P.

Algorithm for resultant polytopes

Edge-skeleton

Volume 00000000 4-d resultant polytopes 00€00000 Predicates

One step beyond... 4-dimensional N(R)

- Polytope $P\subseteq \mathbb{R}^4;$ f-vector is the vector of its face cardinalities.
- Call vertices, edges, ridges, facets, the 0,1,2,3-d, faces of P.
- f-vectors of 4-dimensional N(R) (computed with ResPol)

(5, 10, 10, 5)	(18, 53, 53, 18)
(6, 15, 18, 9)	(18, 54, 54, 18)
(8, 20, 21, 9)	(19, 54, 52, 17)
(9, 22, 21, 8)	(19, 55, 51, 15)
	(19, 55, 52, 16)
	(19, 55, 54, 18)
	(19, 56, 54, 17)
(17, 49, 48, 16)	(19, 56, 56, 19)
(17, 49, 49, 17)	(19, 57, 57, 19)
(17, 50, 50, 17)	(20, 58, 54, 16)
(18, 51, 48, 15)	(20, 59, 57, 18)
(18, 51, 49, 16)	(20, 60, 60, 20)
(18, 52, 50, 16)	(21, 62, 60, 19)
(18, 52, 51, 17)	(21, 63, 63, 21)
(18, 53, 51, 16)	(22, 66, 66, 22)

Algorithm for resultant polytopes

Edge-skeleton

Volume 000000 4-d resultant polytopes 000€0000

Predicates 00000000

Main result

Theorem

Given $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ with N(R) of dimension 4. Then N(R) are degenerations of the polytopes in following cases.

• Degenarations can only decrease the number of faces.

Introduction	Algorithm for resultant polytopes	Edge-skeleton	Volume	4-d
		0000000		000

-d resultant polytopes

Predicates 00000000

Main result

Theorem

Given $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ with N(R) of dimension 4. Then N(R) are degenerations of the polytopes in following cases.

(i) All $|A_i| = 2$, except for one with cardinality 5, is a 4-simplex with f-vector (5, 10, 10, 5).

Degenarations can only decrease the number of faces.

Introduction	Algorithm for resultant polytopes	Edge-skeleton	Volume	4-d resultant polytopes
		0000000		0000000

Main result

Theorem

Given $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ with N(R) of dimension 4. Then N(R) are degenerations of the polytopes in following cases.

- (i) All $|A_i| = 2$, except for one with cardinality 5, is a 4-simplex with f-vector (5, 10, 10, 5).
- (ii) All $|A_i| = 2$, except for two with cardinalities 3 and 4, has f-vector (10, 26, 25, 9).

• Degenarations can only decrease the number of faces.

Introduction	Algorithm for resultant polytopes	Edge-skeleton	Volume	4-d resultant polytopes
		0000000		0000000

Main result

Theorem

Given $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ with N(R) of dimension 4. Then N(R) are degenerations of the polytopes in following cases.

- (i) All $|A_i| = 2$, except for one with cardinality 5, is a 4-simplex with f-vector (5, 10, 10, 5).
- (ii) All $|A_i| = 2$, except for two with cardinalities 3 and 4, has f-vector (10, 26, 25, 9).
- (iii) All $|A_i| = 2$, except for three with cardinality 3, maximal number of ridges is $\tilde{f}_2 = 66$ and of facets $\tilde{f}_3 = 22$. Moreover, $22 \le \tilde{f}_0 \le 28$, and $66 \le \tilde{f}_1 \le 72$. The lower bounds are tight.

- Degenarations can only decrease the number of faces.
- Focus on new case (iii), which reduces to n=2 and each $|A_{\mathfrak{i}}|=3.$

Introduction	Algorithm for resultant polytopes	Edge-skeleton	Volume	4-d resultant polyto
		0000000		0000000

Main result

Theorem

Given $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ with N(R) of dimension 4. Then N(R) are degenerations of the polytopes in following cases.

- (i) All $|A_i| = 2$, except for one with cardinality 5, is a 4-simplex with f-vector (5, 10, 10, 5).
- (ii) All $|A_i| = 2$, except for two with cardinalities 3 and 4, has f-vector (10, 26, 25, 9).
- (iii) All $|A_i| = 2$, except for three with cardinality 3, maximal number of ridges is $\tilde{f}_2 = 66$ and of facets $\tilde{f}_3 = 22$. Moreover, $22 \le \tilde{f}_0 \le 28$, and $66 \le \tilde{f}_1 \le 72$. The lower bounds are tight.

- Degenarations can only decrease the number of faces.
- Focus on new case (iii), which reduces to n=2 and each $|A_{\mathfrak{i}}|=3.$
- Generic upper bound for vertices yields 6608 [Sturmfels'94].

Algorithm for resultant polytopes

Edge-skeleton

Volume 00000000 4-d resultant polytopes

Predicates

Tool (1): N(R) faces and subdivisions

A subdivision S of $A_0 + A_1 + \cdots + A_n$ is mixed when its cells are Minkowski sums of A_i 's subsets.

Algorithm for resultant polytopes

Edge-skeleton

Volume 00000000 4-d resultant polytopes

Predicates

Tool (1): N(R) faces and subdivisions

A subdivision S of $A_0 + A_1 + \cdots + A_n$ is mixed when its cells are Minkowski sums of A_i 's subsets.

 A_2 NOT fine mixed subdivision S of $A_0 + A_1 + A_2$

Proposition (Sturmfels'94)

A regular mixed subdivision S of $A_0 + A_1 + \cdots + A_n$ corresponds to a face of N(R).

Algorithm for resultant polytopes

Edge-skeleton

Volume 0000000 4-d resultant polytopes 00000●00 Predicates

Tool (2): Input genericity

Proposition

Input genericity maximizes the number of resultant polytope faces.

Algorithm for resultant polytopes

Edge-skeleton

n Volume 00000 4-d resultant polytopes 000000●0 Predicates

Facets of 4-d resultant polytopes

Lemma

A 4-dimensioanl N(R) have at most

- 9 resultant facets: 3-d N(R)
- 9 prism facets: 2-d N(R) (triangle) + 1-d N(R)
- 4 zonotope facets: Mink. sum of 1-d N(R)s

Introduction	Algorithm for resultant polytopes	Edge-skeleton	Volume	4-d resultant polytopes	Pr
		0000000		0000000	

References

• Dickenstein, Emiris, F. Combinatorics of 4-dimensional Resultant Polytopes. Proc. of the 38th ACM Symposium on Symbolic and Algebraic Computation, 2013, Boston, MA, USA.

Algorithm for resultant polytopes

Edge-skeleton

Volume

4-d resultant po

Predicates •0000000

Outline

Introduction

An algorithm for computing projections of resultant polytopes

Edge-skeleton computation for polytopes defined by oracles

A practical volume algorithm for high dimensional polytopes

Combinatorics of 4-d resultant polytopes

High-dimensional predicates: algorithms and software

Edge-skeleton

Volume 0000000 4-d resultant polyto

Predicates 0000000

Geometric algorithms and predicates

Setting

- geometric algorithms \rightarrow sequence of geometric predicates
- Hi-dim: as dimension grows predicates become more expensive

Edge-skeleton

Volume

4-d resultant polytop

Predicates 0000000

Geometric algorithms and predicates

Setting

- geometric algorithms \rightarrow sequence of geometric predicates
- Hi-dim: as dimension grows predicates become more expensive

Examples

 Orientation: Does c lie on, left or right of ab?

$$\begin{vmatrix} a_x & a_y & 1 \\ b_x & b_y & 1 \\ c_x & c_y & 1 \end{vmatrix} \gtrless 0$$

Algorithm for resultant polytopes

Edge-skeleton

Volume

4-d resultant pol

ultant polytopes

Predicates

Determinant computation

Given matrix $A \subseteq \mathbb{R}^{d \times d}$

• Theory: State-of-the-art $O(d^{\omega})$, $\omega \sim 2.3727$ [Williams'12]

• Practice: Gaussian elimination, $O(d^3)$

Algorithm for resultant polytopes

Edge-skeleton

Volume

4-d resultant polyto

Predicates

Dynamic Determinant Computations

One-column update problem

Given matrix $A \subseteq \mathbb{R}^{d \times d}$, answer queries for det(A) when i-th column of A, $(A)_i$, is replaced by $\mathfrak{u} \subseteq \mathbb{R}^d$.

Algorithm for resultant polytopes

Edge-skeleton

n Volume

4-d resultant polyto

Predicates

Dynamic Determinant Computations

One-column update problem

Given matrix $A \subseteq \mathbb{R}^{d \times d}$, answer queries for det(A) when i-th column of A, $(A)_i$, is replaced by $\mathfrak{u} \subseteq \mathbb{R}^d$.

Solution: Sherman-Morrison formula (1950)

$$A'^{-1} = A^{-1} - \frac{(A^{-1}(u - (A)_i)) (e_i^T A^{-1})}{1 + e_i^T A^{-1}(u - (A)_i)}$$
$$det(A') = (1 + e_i^T A^{-1}(u - (A)_i)det(A)$$

• Only vector×vector, vector×matrix \rightarrow Complexity: $O(d^2)$

Introduction	Algorithm for resultant polytopes	Edge-skeleton	Volume	4-d resultant polytopes	Predicates
		0000000			0000000

Incremental convex hull: REVISITED

• Orientation $(p_2, p_4, p_5) = sgn(det(A))$

Incremental convex hull: REVISITED

• Orientation(p_6 , p_4 , p_5) = sgn(det(A')) in O(d²)

Incremental convex hull: REVISITED

- Orientation $(p_6, p_4, p_5) = sgn(det(A'))$ in $O(d^2)$
- Store det(A), A^{-1} in a hash table

Incremental convex hull: REVISITED

- Orientation $(p_6, p_4, p_5) = sgn(det(A'))$ in $O(d^2)$
- Store det(A), A^{-1} in a hash table
- Update det(A'), A'^{-1} (Sherman-Morrison)

Introduction	Algorithm for resultant polytopes	Edge-skeleton	Volume	4-d resultant polytopes	Predicates
		0000000			000000

Experiments

Determinants (1-column updates)

• 2 and 7 times faster than state-of-the-art software (Eigen, Linbox, Maple) in rational and integer arithmetic resp.

Convex hull

- Plug into triangulation/CGAL improving performance
- Outperforms polymake, lrs, cdd in most cases with generic input in $d \leq 7$

Point location

- Improves up to 78 times in triangulation/CGAL, using up to 50 times more memory, $d \leq 11$

Introduction 0000000	Algorithm for resultant polytopes	Edge-skeleton	Volume 00000000	4-d resultant polytopes 00000000	Predicates

References

• F, Peñaranda. Faster Geometric Algorithms via Dynamic Determinant Computation. Proc. of European Symposium on Algorithms, LNCS, 2012, Ljubljana, Slovenia.

Introduction 0000000 Algorithm for resultant polytopes

Edge-skeleton

/olume

⊢<mark>d resultant polyto</mark> ⊃ooooooo Predicates

Acknowledgements

Funding

Co-authors

Predicates 0000000

Acknowledgements

Funding

Co-authors

THANK YOU !!!