High-dimensional polytopes defined by oracles: algorithms, computations and applications

Vissarion Fisikopoulos

Dept. of Informatics & Telecommunications, University of Athens

A convex polytope \(P \subseteq \mathbb{R}^d \) can be represented as the

1. convex hull of a pointset \(\{p_1, \ldots, p_n\} \) (V-representation)
2. intersection of halfspaces \(\{h_1, \ldots, h_m\} \) (H-representation)

- These problems are equivalent by polytope duality.
Algorithmic Issues

- For general dimension d there is no polynomial algorithm for the convex hull (or vertex enumeration) problem since m can be $O(n^{\lfloor d/2 \rfloor})$ [McMullen'70].

- It is open whether there exist a total poly-time algorithm for the convex hull (or vertex enumeration) problem, i.e. runs in poly-time in n, m, d.
What is an Oracle?
Polytope Oracles

Implicit representation for a polytope $P \subseteq \mathbb{R}^d$.

OPT$_P$: Given direction $c \in \mathbb{R}^d$ return the vertex $v \in P$ that maximizes $c^T v$.

SEP$_P$: Given point $y \in \mathbb{R}^d$, return yes if $y \in P$ otherwise a hyperplane h that separates y from P.
Why polytope Oracles?

- Polynomial time algorithms for combinatorial optimization problems using the ellipsoid method
 [Grötschel-Lovász-Schrijver’93]

- Randomized polynomial-time algorithms for approximating the volume of convex bodies
 [Dyer-Frieze-Kannan ’90], . . . , [Lovász-Vempala ’04]
Our view of the Oracles

Resultant, Discriminant, Secondary polytopes

- Vertices \rightarrow subdivisions of a pointset’s convex hull
- OPT_P is available via a subdivision computation
- Applications in Computational Algebraic Geometry, Geometric Modelling, Optimization, Combinatorics
Outline

Introduction

An algorithm for computing projections of resultant polytopes

Edge-skeleton computation for polytopes defined by oracles

A practical volume algorithm for high dimensional polytopes

Combinatorics of 4-d resultant polytopes

High-dimensional predicates: algorithms and software
Outline

Introduction

An algorithm for computing projections of resultant polytopes

Edge-skeleton computation for polytopes defined by oracles

A practical volume algorithm for high dimensional polytopes

Combinatorics of 4-d resultant polytopes

High-dimensional predicates: algorithms and software
Main actor: resultant polytope

- **Geometry:** Minkowski summands of secondary polytopes, generalize Birkhoff polytopes
- **Algebra:** resultant expresses the solvability of polynomial systems
- **Applications:** resultant computation, implicitization of parametric hypersurfaces [Emiris, Kalinka, Konaxis, LuuBa ’12]
Polytopes and Algebra

- Given $n + 1$ polynomials on n variables.

\[f_0(x) = ax^2 + b \]
\[f_1(x) = cx^2 + dx + e \]
Polytopes and Algebra

• Given $n + 1$ polynomials on n variables.
• Supports (set of exponents of monomials with non-zero coefficient) $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$.

\[f_0(x) = ax^2 + b \]
\[f_1(x) = cx^2 + dx + e \]

\[A_0 \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \]
\[A_1 \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \]
Introduction
Algorithm for resultant polytopes

Polytopes and Algebra

- Given \(n + 1 \) polynomials on \(n \) variables.
- Supports (set of exponents of monomials with non-zero coefficient) \(A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n \).
- The resultant \(R \) is the polynomial in the coefficients of a system of polynomials which vanishes if there exists a common root in the torus of the given polynomials.

\[
f_0(x) = ax^2 + b \quad A_0
\]
\[
f_1(x) = cx^2 + dx + e \quad A_1
\]
\[
R(a, b, c, d, e) = ad^2b + c^2b^2 - 2caeb + a^2e^2
\]
Polytopes and Algebra

• Given \(n + 1 \) polynomials on \(n \) variables.
• Supports (set of exponents of monomials with non-zero coefficient) \(A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n \).
• The resultant \(R \) is the polynomial in the coefficients of a system of polynomials which vanishes if there exists a common root in the torus of the given polynomials.
• The resultant polytope \(N(R) \), is the convex hull of the support of \(R \), i.e. the Newton polytope of the resultant.

\[
\begin{align*}
 f_0(x) &= ax^2 + b & A_0 & \bullet \quad _ \quad _ \quad _ \\
 f_1(x) &= cx^2 + dx + e & A_1 & \bullet \quad _ \quad _ \quad _ \quad _ \\
 R(a, b, c, d, e) &= ad^2b + c^2b^2 - 2caeb + a^2e^2 & N(R)
\end{align*}
\]
Mixed subdivisions

A subdivision S of Minkowski sum $A_0 + A_1 + \cdots + A_n$ is

- **mixed**: cells are Minkowski sums of subsets of A_i’s,
- **fine**: for each cell $\sigma = \sigma_0 + \cdots + \sigma_n$, $\dim(\sigma) = \sum_{i=0}^{n} \dim(\sigma_i)$

Example

A_0

A_1

A_2

fine mixed subdivision S of $A_0 + A_1 + A_2$
Theorem [GKZ’94, Sturmfels’94]

- many-to-one relation from regular fine mixed subdivisions of $\Lambda_0 + \cdots + \Lambda_n$ to $\mathbb{N}(\mathbb{R})$ vertices
- one-to-one relation between regular fine mixed subdivisions and secondary polytope Σ vertices
The idea of the algorithm

Input: $\Lambda_0, \Lambda_1, \ldots, \Lambda_n \subset \mathbb{Z}^n$

Simplistic method:

- compute the vertices of secondary polytope Σ [Rambau ’02]
- many-to-one relation between vertices of Σ and $N(R)$
The idea of the algorithm

Input: $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$

New Algorithm:

- Optimization oracle for $N(R)$ by subdivision computation
- Output sensitive: 1 subd. per $N(R)$ vertex + 1 per $N(R)$ facet
- Computes projections of $N(R), \Sigma$
The Algorithm

- incremental
- first: compute conv.hull of \(d + 1\) aff. indep. vertices of \(N(R)\)
- step: call the oracle with outer normal vector of a halfspace
 → either validate this halfspace
 → or add a new vertex to the convex hull
The Algorithm

- incremental
- first: compute conv.hull of \(d + 1\) aff. indep. vertices of \(N(R)\)
- step: call the oracle with outer normal vector of a halfspace
 → either validate this halfspace
 → or add a new vertex to the convex hull

Theorem

\(H-, V\)-repr. & triang. \(T\) of \(N(R)\) can be computed in

\[O(d^5ns^2) \] arithmetic operations \(\ + \) \(O(n + m)\) oracle calls

\(n, m, s\) are the number of vertices, facets of \(N(R)\), cells of \(T\) resp.
The Algorithm

- incremental
- first: compute conv.hull of \(d + 1 \) aff. indep. vertices of \(N(R) \)
- step: call the oracle with outer normal vector of a halfspace
 \(\rightarrow \) either validate this halfspace
 \(\rightarrow \) or add a new vertex to the convex hull

Theorem

\(H-, V\text{-repr.} \) & triang. \(T \) of \(N(R) \) can be computed in

\[O(d^5 ns^2) \text{ arithmetic operations } + O(n + m) \text{ oracle calls} \]

\(n, m, s \) are the number of vertices, facets of \(N(R) \), cells of \(T \) resp.

\textbf{BUT:} \(s \) can be \(O(n^{\lfloor d/2 \rfloor}) \)
ResPol package

- C++

- Towards high-dimensional

- Propose *hashing of determinantal predicates* scheme: optimizing sequences of similar determinants (×100 speed-up)

- Computes 5-, 6- and 7-dimensional polytopes with 35K, 23K and 500 vertices, respectively, within 2hrs

- Computes polytopes of many important surface equations encountered in geometric modeling in < 1sec, whereas the corresponding secondary polytopes are intractable
References

Outline

Introduction

An algorithm for computing projections of resultant polytopes

Edge-skeleton computation for polytopes defined by oracles

A practical volume algorithm for high dimensional polytopes

Combinatorics of 4-d resultant polytopes

High-dimensional predicates: algorithms and software
Vertex enumeration with edge-directions

Given \(\text{OPT}_P \) and a superset \(D \) of the edge directions \(D(P) \) of \(P \subseteq \mathbb{R}^d \), compute the vertices \(P \).

Proposition (Rothblum, Onn '07)

Let \(P \subseteq \mathbb{R}^d \) given by \(\text{OPT}_P \), and \(D \supseteq D(P) \). All vertices of \(P \) can be computed in

\[
O(|D|^{d-1}) \text{ calls to } \text{OPT}_P + O(|D|^{d-1}) \text{ arithmetic operations.}
\]
Well-described polytopes and oracles

Definition
A polytope $P \subseteq \mathbb{R}^d$ is well-described (with a parameter φ) if there exists an H-representation for P in which every inequality has encoding length at most φ. The encoding length of P is $\langle P \rangle = d + \varphi$.

Proposition (Grötschel et al.'93)
For a well-described polytope, we can compute OPT_P from SEP_P (and vice versa) in oracle polynomial-time. The runtime (polynomially) depends on d and φ.
The edge-skeleton algorithm

Input:
- \(\text{OPT}_P \)
- Edge vec. \(P \) (dir. & len.): \(D \)

Output:
- Edge-skeleton of \(P \)

Sketch of Algorithm:
- Compute a vertex of \(P \) (\(x = \text{OPT}_P(c) \) for arbitrary \(c^T \in \mathbb{R}^d \))
The edge-skeleton algorithm

Input:
- OPT_p
- Edge vec. \mathbf{P} (dir. & len.): \mathbf{D}

Output:
- Edge-skeleton of \mathbf{P}

Sketch of Algorithm:
- Compute a vertex of \mathbf{P} ($\mathbf{x} = \text{OPT}_p(\mathbf{c})$ for arbitrary $\mathbf{c}^T \in \mathbb{R}^d$)
- Compute segments $\mathbf{S} = \{ (\mathbf{x}, \mathbf{x} + \mathbf{d}) \text{, for all } \mathbf{d} \in \mathbf{D} \}$
The edge-skeleton algorithm

Input:
- OPT_P
- Edge vec. P (dir. & len.): D

Output:
- Edge-skeleton of P

Sketch of Algorithm:
- Compute a vertex of P (x = OPT_P(c) for arbitrary c^T ∈ R^d)
- Compute segments S = {(x, x + d), for all d ∈ D}
- Remove from S all segments (x, y) s.t. y ∉ P (OPT_P → SEP_P)
The edge-skeleton algorithm

Input:
- OPT_P
- Edge vec. P (dir. & len.): D

Output:
- Edge-skeleton of P

Sketch of Algorithm:
- Compute a vertex of P (x = OPT_P(c) for arbitrary c^T ∈ R^d)
- Compute segments S = {(x, x + d), for all d ∈ D}
- Remove from S all segments (x, y) s.t. y ∉ P (OPT_P → SEP_P)
- Remove from S the segments that are not extreme
The edge-skeleton algorithm

Input:
- OPT\textsubscript{P}
- Edge vec. \textit{P} (dir. & len.): \textit{D}

Output:
- Edge-skeleton of \textit{P}

Sketch of \textbf{Algorithm}:
- Compute a vertex of \textit{P} \((x = \text{OPT}\textsubscript{P}(c)\) for arbitrary \(c^T \in \mathbb{R}^d)\)
- Compute segments \(S = \{(x, x + d), \text{ for all } d \in \textit{D}\}\)
- Remove from \(S\) all segments \((x, y)\) s.t. \(y \notin \textit{P} \) (\(\text{OPT}\textsubscript{P} \rightarrow \text{SEP}\textsubscript{P}\))
- Remove from \(S\) the segments that are not extreme

Can be altered to work with \textit{edge directions only}
Complexity

Theorem

Given OPT_P and a superset of edge directions D of a well-described polytope $P \subseteq \mathbb{R}^d$, the edge skeleton of P can be computed in oracle total polynomial-time

$$O \left(n |D| \left(T + \mathbb{L}P(d^3 |D| \langle B \rangle) + d \log n \right) \right),$$

- n the number of vertices of P,
- T: runtime of oracle conversion algorithm for P and D,
- $\langle B \rangle$ is the binary encoding length of the vector set P and D,
- $\mathbb{L}P(\langle A \rangle + \langle b \rangle + \langle c \rangle)$ runtime of max $c^T x$ over $\{x : Ax \leq b\}$.
Applications

Corollary

The edge skeleton of resultant, secondary polytopes can be computed in oracle total polynomial-time.

Corollary

The edge skeletons of polytopes appearing in convex combinatorial optimization [Rothblum-Onn ’04] and convex integer programming [De Loera et al. ’09] problems can be computed in oracle total polynomial-time.
References

• Emiris, F, Gärtner Efficient edge skeleton computation for polytopes defined by oracles. Submitted to Computational Geometry - Theory and Applications.
Outline

Introduction

An algorithm for computing projections of resultant polytopes

Edge-skeleton computation for polytopes defined by oracles

A practical volume algorithm for high dimensional polytopes

Combinatorics of 4-d resultant polytopes

High-dimensional predicates: algorithms and software
The volume computation problem

Input: Polytope \(P := \{ x \in \mathbb{R}^d \mid Ax \leq b \} \) \(A \in \mathbb{R}^{m \times d}, b \in \mathbb{R}^m \)

Output: Volume of \(P \)

- \#-P hard for vertex and for halfspace repres. [DyerFrieze’88]
The volume computation problem

Input: Polytope \(P := \{ x \in \mathbb{R}^d \mid Ax \leq b \} \) \(A \in \mathbb{R}^{m \times d} \), \(b \in \mathbb{R}^m \)

Output: Volume of \(P \)

- \#:P hard for vertex and for halfspace repres. [DyerFrieze’88]
- randomized poly-time algorithm approximates the volume of a convex body with high probability and arbitrarily small relative error [DyerFriezeKannan’91] \(O^*(d^{23}) \rightarrow O^*(d^4) \) [LovVemp’04]
The volume computation problem

Input: Polytope $P := \{ x \in \mathbb{R}^d \mid Ax \leq b \}$ $A \in \mathbb{R}^{m \times d}$, $b \in \mathbb{R}^m$

Output: Volume of P

- $\#P$ hard for vertex and for halfspace repres. [DyerFrieze’88]
- Randomized poly-time algorithm approximates the volume of a convex body with high probability and arbitrarily small relative error [DyerFriezeKannan’91] $O^*(d^{23}) \rightarrow O^*(d^4)$ [LovVemp’04]

Implementations

- Exact (VINCI, Qhull, etc.) cannot compute in high dimensions (e.g. > 20)
- Randomized ([CousinsVempala’14], [EmirisF’14]) compute in high dimensions (e.g. 100)
How do we compute a random point in a polytope P?

- easy for simple shapes like simplex or cube
How do we compute a random point in a polytope P?

- easy for simple shapes like simplex or cube
- BUT for arbitrary polytopes we need *random walks*
Random Directions Hit-and-Run (RDHR)

Input: point $x \in P$

Output: new point $x' \in P$

1. line ℓ through x, uniform on $B(x, 1)$
2. set x' to be a uniform distributted point on $P \cap \ell$

Iterate this for W steps.
Random Directions Hit-and-Run (RDHR)

Input: point $x \in P$

Output: new point $x' \in P$

1. line ℓ through x, uniform on $B(x, 1)$
2. set x' to be a uniform distributed point on $P \cap \ell$

Iterate this for W steps.
Random Directions Hit-and-Run (RDHR)

Input: point $x \in P$

Output: new point $x' \in P$

1. line ℓ through x, uniform on $B(x, 1)$
2. set x' to be a uniform distributed point on $P \cap \ell$

Iterate this for W steps.

- x' is unif. random distrib. in P after $W = O^*(d^3)$ steps, where $O^*(\cdot)$ hides log factors [LovaszVempala’06]

- to generate many random points iterate this procedure
Multiphase Monte Carlo (Sequence of balls)

- $\mathbf{B}(c, 2^{i/d}), \ i = \alpha, \alpha + 1, \ldots, \beta, \quad \alpha = \lfloor d \log r \rfloor, \ \beta = \lceil d \log \rho \rceil$

- $\mathbf{P}_i := \mathbf{P} \cap \mathbf{B}(c, 2^{i/d}), \ i = \alpha, \alpha + 1, \ldots, \beta, \quad \mathbf{P}_\alpha = \mathbf{B}(c, 2^{\alpha/d}) \subseteq \mathbf{B}(c, r)$
Multiphase Monte Carlo (Generate/count random points)

- \(B(c, 2^{i/d}), \ i = \alpha, \alpha + 1, \ldots, \beta, \)
 \(\alpha = \lfloor d \log r \rfloor, \ \beta = \lceil d \log \rho \rceil \)

- \(P_i := P \cap B(c, 2^{i/d}), \ i = \alpha, \alpha + 1, \ldots, \beta, \)
 \(P_{\alpha} = B(c, 2^{\alpha/d}) \subseteq B(c, r) \)

1. Generate rand. points in \(P_i \)
2. Count how many rand. points in \(P_i \) fall in \(P_{i-1} \)

\[
\text{vol}(P) = \text{vol}(P_\alpha) \prod_{i=\alpha+1}^{\beta} \frac{\text{vol}(P_i)}{\text{vol}(P_{i-1})}
\]
Multithread Monte Carlo (Generate/count random points)

- \(B(c, 2^{i/d}) \), \(i = \alpha, \alpha + 1, \ldots, \beta \),
 \(\alpha = \lfloor d \log r \rfloor \), \(\beta = \lceil d \log \rho \rceil \)

- \(P_i := P \cap B(c, 2^{i/d}) \), \(i = \alpha, \alpha + 1, \ldots, \beta \),
 \(P_\alpha = B(c, 2^{\alpha/d}) \subseteq B(c, r) \)

1. Generate rand. points in \(P_i \)
2. Count how many rand. points in \(P_i \) fall in \(P_{i-1} \)

\[
\text{vol}(P) = \text{vol}(P_\alpha) \prod_{i=\alpha+1}^{\beta} \frac{\text{vol}(P_i)}{\text{vol}(P_{i-1})}
\]
Contributions

Some modifications towards practicality

- $W = \lceil 10 + d/10 \rceil$ random walk steps (vs. $O^*(d^3)$ which hides constant 10^{11}) achieve $< 1\%$ error in up to 100 dim.
- implement boundary oracles with $O(m)$ runtime in coordinate (vs. random) directions hit-and-run
Contributions

Some modifications towards practicality

- \(W = \lfloor 10 + d/10 \rfloor \) random walk steps (vs. \(O^*(d^3) \) which hides constant \(10^{11} \)) achieve < 1% error in up to 100 dim.
- implement boundary oracles with \(O(m) \) runtime in coordinate (vs. random) directions hit-and-run

Highlights of experimental results

- approximate the volume of a series of polytopes (cubes, random, cross, Birkhoff) for \(d < 100 \) in <2 hrs with mean approximation error <1%
- Compute the volume of Birkhoff polytopes \(B_{11}, \ldots, B_{15} \) in few hrs whereas exact methods have only computed that of \(B_{10} \) by specialized software in \(\sim 1 \) year of parallel computation
References

Outline

Introduction

An algorithm for computing projections of resultant polytopes

Edge-skeleton computation for polytopes defined by oracles

A practical volume algorithm for high dimensional polytopes

Combinatorics of 4-d resultant polytopes

High-dimensional predicates: algorithms and software
Existing work

- [GKZ'90] Univariate case / general dimensional $\mathbb{N}(\mathbb{R})$
Existing work

- [GKZ’90] Univariate case / general dimensional $\mathbb{N}(\mathbb{R})$

- [Sturmfels’94] Multivariate case / up to 3 dimensional $\mathbb{N}(\mathbb{R})$
One step beyond... 4-dimensional $\mathbb{N}(\mathbb{R})$

- Polytope $P \subseteq \mathbb{R}^4$; f-vector is the vector of its face cardinalities.
One step beyond... 4-dimensional $N(R)$

- Polytope $P \subseteq \mathbb{R}^4$; f-vector is the vector of its face cardinalities.
- Call vertices, edges, ridges, facets, the $0,1,2,3$-d, faces of P.
One step beyond... 4-dimensional $\mathbb{N}(\mathbb{R})$

- Polytope $P \subseteq \mathbb{R}^4$; f-vector is the vector of its face cardinalities.
- Call vertices, edges, ridges, facets, the 0,1,2,3-d, faces of P.

- f-vectors of 4-dimensional $\mathbb{N}(\mathbb{R})$ (computed with ResPol)

<table>
<thead>
<tr>
<th>f-vector</th>
<th>f-vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5, 10, 10, 5)</td>
<td>(18, 53, 53, 18)</td>
</tr>
<tr>
<td>(6, 15, 18, 9)</td>
<td>(18, 54, 54, 18)</td>
</tr>
<tr>
<td>(8, 20, 21, 9)</td>
<td>(19, 54, 52, 17)</td>
</tr>
<tr>
<td>(9, 22, 21, 8)</td>
<td>(19, 55, 51, 15)</td>
</tr>
<tr>
<td></td>
<td>(19, 55, 52, 16)</td>
</tr>
<tr>
<td></td>
<td>(19, 55, 54, 18)</td>
</tr>
<tr>
<td></td>
<td>(19, 56, 54, 17)</td>
</tr>
<tr>
<td>(17, 49, 48, 16)</td>
<td>(19, 56, 56, 19)</td>
</tr>
<tr>
<td>(17, 49, 49, 17)</td>
<td>(19, 57, 57, 19)</td>
</tr>
<tr>
<td>(17, 50, 50, 17)</td>
<td>(20, 58, 54, 16)</td>
</tr>
<tr>
<td>(18, 51, 48, 15)</td>
<td>(20, 59, 57, 18)</td>
</tr>
<tr>
<td>(18, 51, 49, 16)</td>
<td>(20, 60, 60, 20)</td>
</tr>
<tr>
<td>(18, 52, 50, 16)</td>
<td>(21, 62, 60, 19)</td>
</tr>
<tr>
<td>(18, 52, 51, 17)</td>
<td>(21, 63, 63, 21)</td>
</tr>
<tr>
<td>(18, 53, 51, 16)</td>
<td>(22, 66, 66, 22)</td>
</tr>
</tbody>
</table>
Main result

Theorem

Given $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ with $N(R)$ of dimension 4. Then $N(R)$ are degenerations of the polytopes in following cases.

- Degenerations can only decrease the number of faces.
Main result

Theorem

Given $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ with $N(R)$ of dimension 4. Then $N(R)$ are degenerations of the polytopes in following cases.

(i) All $|A_i| = 2$, except for one with cardinality 5, is a 4-simplex with f-vector $(5, 10, 10, 5)$.

- Degenerations can only decrease the number of faces.
Main result

Theorem

Given $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ with $N(R)$ of dimension 4. Then $N(R)$ are degenerations of the polytopes in following cases.

(i) All $|A_i| = 2$, except for one with cardinality 5, is a 4-simplex with f-vector $(5, 10, 10, 5)$.

(ii) All $|A_i| = 2$, except for two with cardinalities 3 and 4, has f-vector $(10, 26, 25, 9)$.

- Degenarations can only decrease the number of faces.
Main result

Theorem
Given $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ with $N(R)$ of dimension 4. Then $N(R)$ are degenerations of the polytopes in following cases.

(i) All $|A_i| = 2$, except for one with cardinality 5, is a 4-simplex with f-vector $(5, 10, 10, 5)$.

(ii) All $|A_i| = 2$, except for two with cardinalities 3 and 4, has f-vector $(10, 26, 25, 9)$.

(iii) All $|A_i| = 2$, except for three with cardinality 3, maximal number of ridges is $\tilde{f}_2 = 66$ and of facets $\tilde{f}_3 = 22$. Moreover, $22 \leq \tilde{f}_0 \leq 28$, and $66 \leq \tilde{f}_1 \leq 72$. The lower bounds are tight.

- Degenerations can only decrease the number of faces.
- Focus on new case (iii), which reduces to $n = 2$ and each $|A_i| = 3$.
Main result

Theorem

Given $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ with $N(R)$ of dimension 4. Then $N(R)$ are degenerations of the polytopes in following cases.

(i) All $|A_i| = 2$, except for one with cardinality 5, is a 4-simplex with f-vector $(5, 10, 10, 5)$.

(ii) All $|A_i| = 2$, except for two with cardinalities 3 and 4, has f-vector $(10, 26, 25, 9)$.

(iii) All $|A_i| = 2$, except for three with cardinality 3, maximal number of ridges is $\tilde{f}_2 = 66$ and of facets $\tilde{f}_3 = 22$. Moreover, $22 \leq \tilde{f}_0 \leq 28$, and $66 \leq \tilde{f}_1 \leq 72$. The lower bounds are tight.

• Degenerations can only decrease the number of faces.
• Focus on new case (iii), which reduces to $n = 2$ and each $|A_i| = 3$.
• Generic upper bound for vertices yields 6608 [Sturmfels'94].
Tool (1): \(\mathbb{N}(\mathbb{R}) \) faces and subdivisions

A subdivision \(S \) of \(A_0 + A_1 + \cdots + A_n \) is **mixed** when its cells are Minkowski sums of \(A_i \)'s subsets.

Example

\[A_0 \]

\[A_1 \]

\[A_2 \] \(\setminus \) NOT fine mixed subdivision \(S \) of \(A_0 + A_1 + A_2 \)
Tool (1): $\mathbb{N}(\mathbb{R})$ faces and subdivisions

A subdivision S of $A_0 + A_1 + \cdots + A_n$ is mixed when its cells are Minkowski sums of A_i's subsets.

Example

\[A_0 \]

\[A_1 \]

\[A_2 \]

NOT fine mixed subdivision S of $A_0 + A_1 + A_2$

Proposition (Sturmfels’94)

A regular mixed subdivision S of $A_0 + A_1 + \cdots + A_n$ corresponds to a face of $\mathbb{N}(\mathbb{R})$.
Tool (2): Input genericity

Proposition

Input genericity maximizes the number of resultant polytope faces.

Proof idea

\[N(R) \ f\text{-vector}: (14, 38, 36, 12) \]

\[N(R^*) \ f\text{-vector}: (18, 52, 50, 16) \]
Facets of 4-d resultant polytopes

Lemma

A 4-dimensional $N(R)$ have at most

- 9 resultant facets: 3-d $N(R)$
- 9 prism facets: 2-d $N(R)$ (triangle) + 1-d $N(R)$
- 4 zonotope facets: Mink. sum of 1-d $N(R)$s
References

• Dickenstein, Emiris, F. Combinatorics of 4-dimensional Resultant Polytopes. Proc. of the 38th ACM Symposium on Symbolic and Algebraic Computation, 2013, Boston, MA, USA.
Outline

Introduction

An algorithm for computing projections of resultant polytopes

Edge-skeleton computation for polytopes defined by oracles

A practical volume algorithm for high dimensional polytopes

Combinatorics of 4-d resultant polytopes

High-dimensional predicates: algorithms and software
Geometric algorithms and predicates

Setting

- geometric algorithms \rightarrow sequence of geometric predicates
- **Hi-dim**: as dimension grows predicates become more expensive
Geometric algorithms and predicates

Setting

- geometric algorithms → sequence of geometric predicates
- Hi-dim: as dimension grows predicates become more expensive

Examples

- Orientation: Does c lie on, left or right of ab?

$$\begin{vmatrix} a_x & a_y & 1 \\ b_x & b_y & 1 \\ c_x & c_y & 1 \end{vmatrix} \geq 0$$
Determination computation

Given matrix $\mathbf{A} \subseteq \mathbb{R}^{d \times d}$

- **Theory**: State-of-the-art $O(d^\omega)$, $\omega \sim 2.3727$ [Williams'12]

- **Practice**: Gaussian elimination, $O(d^3)$
Dynamic Determinant Computations

One-column update problem
Given matrix $A \subseteq \mathbb{R}^{d \times d}$, answer queries for $\det(A)$ when i-th column of A, $(A)_i$, is replaced by $u \subseteq \mathbb{R}^d$.
Dynamic Determinant Computations

One-column update problem
Given matrix $A \subseteq \mathbb{R}^{d \times d}$, answer queries for $\det(A)$ when i-th column of A, $(A)_i$, is replaced by $u \subseteq \mathbb{R}^d$.

Solution: Sherman-Morrison formula (1950)

$$
A^{-1} = A^{-1} - \frac{(A^{-1}(u - (A)_i)) (e_i^T A^{-1})}{1 + e_i^T A^{-1}(u - (A)_i)}
$$

$$
\det(A') = (1 + e_i^T A^{-1}(u - (A)_i))\det(A)
$$

- Only vector\timesvector, vector\timesmatrix \rightarrow Complexity: $O(d^2)$
Incremental convex hull: REVISITED

\[A = \begin{pmatrix} p_2 & p_4 & p_5 \\ 1 & 1 & 1 \end{pmatrix} \]

- Orientation\((p_2, p_4, p_5) = \text{sgn}(\det(A))\)
Incremental convex hull: REVISITED

\[
A' = \begin{bmatrix}
p_6 & p_4 & p_5 \\
1 & 1 & 1
\end{bmatrix}
\]

\[
\text{Orientation}(p_6, p_4, p_5) = \text{sgn}(\det(A')) \text{ in } O(d^2)
\]
Incremental convex hull: REVISITED

\[A' = \begin{array}{ccc} p_6 & p_4 & p_5 \\ 1 & 1 & 1 \end{array} \]

- Orientation\((p_6, p_4, p_5) = \text{sgn}(\det(A'))\) in \(O(d^2)\)
- Store \(\det(A), A^{-1}\) in a hash table
Incremental convex hull: REVISITED

\[A' = \begin{bmatrix} p_6 & p_4 & p_5 \\ 1 & 1 & 1 \end{bmatrix} \]

- Orientation \((p_6, p_4, p_5) = \text{sgn}(|\det(A')|) \) in \(O(d^2) \)
- Store \(\det(A), A^{-1} \) in a hash table
- Update \(\det(A'), A'^{-1} \) (Sherman-Morrison)
Experiments

Determinants (1-column updates)

- 2 and 7 times faster than state-of-the-art software (Eigen, Linbox, Maple) in rational and integer arithmetic resp.

Convex hull

- Plug into triangulation/CGAL improving performance
- Outperforms polymake, lrs, cdd in most cases with generic input in $d \leq 7$

Point location

- Improves up to 78 times in triangulation/CGAL, using up to 50 times more memory, $d \leq 11$
References

Acknowledgements

Funding

Co-authors
Acknowledgements

Funding

Co-authors

THANK YOU !!!