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Classical Polytope Representations

A convex polytope P ⊆ Rd can be represented as the

1. convex hull of a pointset {p1, . . . , pn} (V-representation)

2. intersection of halfspaces {h1, . . . , hm} (H-representation)

convex hull problem

vertex enumeration problem

• These problems are equivalent by polytope duality.
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Algorithmic Issues

• For general dimension d there is no polynomial algorithm for
the convex hull (or vertex enumeration) problem since m can
be O

(
nbd/2c

)
[McMullen’70].

• It is open whether there exist a total poly-time algorithm for
the convex hull (or vertex enumeration) problem, i.e. runs in
poly-time in n,m, d.
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What is an Oracle?



Introduction Algorithm for resultant polytopes Edge-skeleton Volume 4-d resultant polytopes Predicates

Polytope Oracles
Implicit representation for a polytope P ⊆ Rd.

OPTP: Given direction c ∈ Rd return the vertex v ∈ P that maximizes
cTv.

SEPP: Given point y ∈ Rd, return yes if y ∈ P otherwise a
hyperplane h that separates y from P.

c

v

P P
h

y
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Why polytope Oracles?

• Polynomial time algorithms for combinatorial optimization
problems using the ellipsoid method
[Grötschel-Lovász-Schrijver’93]

• Randomized polynomial-time algorithms for approximating the
volume of convex bodies
[Dyer-Frieze-Kannan ’90],. . . ,[Lovász-Vempala ’04]
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Our view of the Oracles

Resultant, Discriminant, Secondary polytopes

• Vertices → subdivisions of a
pointset’s convex hull

• OPTP is available via a subdivision
computation

• Applications in Computational Algebraic Geometry, Geometric
Modelling, Optimization, Combinatorics
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An algorithm for computing projections of resultant polytopes

Edge-skeleton computation for polytopes defined by oracles

A practical volume algorithm for high dimensional polytopes

Combinatorics of 4-d resultant polytopes

High-dimensional predicates: algorithms and software
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Main actor: resultant polytope

• Geometry: Minkowski summands of secondary polytopes,
generalize Birkhoff polytopes

• Algebra: resultant expresses the solvability of polynomial
systems

• Applications: resultant computation, implicitization of
parametric hypersurfaces [Emiris, Kalinka, Konaxis, LuuBa ’12]

Enneper’s Minimal Surface
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Polytopes and Algebra

• Given n+ 1 polynomials on n variables.

• Supports (set of exponents of monomials with non-zero
coefficient) A0, A1, . . . , An ⊂ Zn.

• The resultant R is the polynomial in the coefficients of a
system of polynomials which vanishes if there exists a
common root in the torus of the given polynomials.

• The resultant polytope N(R), is the convex hull of the
support of R, i.e. the Newton polytope of the resultant.

f0(x) = ax2 + b

f1(x) = cx2 + dx+ e
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Polytopes and Algebra

• Given n+ 1 polynomials on n variables.

• Supports (set of exponents of monomials with non-zero
coefficient) A0, A1, . . . , An ⊂ Zn.

• The resultant R is the polynomial in the coefficients of a
system of polynomials which vanishes if there exists a
common root in the torus of the given polynomials.

• The resultant polytope N(R), is the convex hull of the
support of R, i.e. the Newton polytope of the resultant.

A0

A1

N(R)R(a, b, c, d, e) = ad2b+ c2b2 − 2caeb+ a2e2

f0(x) = ax2 + b

f1(x) = cx2 + dx+ e



Introduction Algorithm for resultant polytopes Edge-skeleton Volume 4-d resultant polytopes Predicates

Mixed subdivisions

A subdivision S of Minkowski sum A0 +A1 + · · ·+An is

• mixed: cells are Minkowski sums of subsets of Ai’s,

• fine: for each cell σ = σ0+ · · ·+σn, dim(σ) =
∑n
i=0 dim(σi)

Example

A0

A1

A2 fine mixed subdivision S of A0 + A1 + A2
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Resultant polytope vertices

Theorem [GKZ’94,
Sturmfels’94]

• many-to-one relation from
regular fine mixed
subdivisions of
A0 + · · ·+An to N(R)
vertices

• one-to-one relation between
regular fine mixed
subdivisions and secondary
polytope Σ vertices
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The idea of the algorithm

Input: A0, A1, . . . , An ⊂ Zn
Simplistic method:

• compute the vertices of secondary polytope Σ [Rambau ’02]

• many-to-one relation between vertices of Σ and N(R)
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The idea of the algorithm

Input: A0, A1, . . . , An ⊂ Zn
New Algorithm:

• Optimization oracle for N(R) by subdivision computation

• Output sensitive: 1 subd. per N(R) vertex + 1 per N(R) facet

• Computes projections of N(R), Σ
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The Algorithm

• incremental

• first: compute conv.hull of d+ 1 aff. indep. vertices of N(R)

• step: call the oracle with outer normal vector of a halfspace→ either validate this halfspace→ or add a new vertex to the convex hull

N(R)

Q

BUT: s can be O
(
nbd/2c

)
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ResPol package

• C++

• Towards high-dimensional

• Propose hashing of determinantal predicates scheme:
optimizing sequences of similar determinants (x100 speed-up)

• Computes 5-, 6- and 7-dimensional polytopes with 35K, 23K
and 500 vertices, respectively, within 2hrs

• Computes polytopes of many important surface equations
encountered in geometric modeling in < 1sec, whereas the
corresponding secondary polytopes are intractable
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Vertex enumeration with edge-directions

Given OPTP and a superset D of the edge directions D(P) of
P ⊆ Rd, compute the vertices P.

Proposition (Rothblum, Onn ’07)

Let P ⊆ Rd given by OPTP, and D ⊇ D(P). All vertices of P can
be computed in

O(|D|d−1) calls to OPTP +O(|D|d−1) arithmetic operations.
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Well-described polytopes and oracles

Definition
A polytope P ⊆ Rd is well-described (with a parameter ϕ) if there
exists an H-representation for P in which every inequality has
encoding length at most ϕ. The encoding length of P is
〈P〉 = d+ϕ.

Proposition (Grötschel et al.’93)

For a well-described polytope, we can compute OPTP from SEPP
(and vice versa) in oracle polynomial-time. The runtime
(polynomially) depends on d and ϕ.
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The edge-skeleton algorithm

Input:

• OPTP
• Edge vec. P (dir. & len.): D

Output:

• Edge-skeleton of P

P

c

Sketch of Algorithm:

• Compute a vertex of P (x = OPTP(c) for arbitrary cT ∈ Rd)

• Compute segments S = {(x, x+ d), for all d ∈ D}

• Remove from S all segments (x, y) s.t. y /∈ P (OPTP → SEPP)

• Remove from S the segments that are not extreme
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The edge-skeleton algorithm

Input:

• OPTP
• Edge vec. P (dir. & len.): D

Output:

• Edge-skeleton of P

P

Sketch of Algorithm:

• Compute a vertex of P (x = OPTP(c) for arbitrary cT ∈ Rd)

• Compute segments S = {(x, x+ d), for all d ∈ D}

• Remove from S all segments (x, y) s.t. y /∈ P (OPTP → SEPP)

• Remove from S the segments that are not extreme

Can be altered to work with edge directions only
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Complexity

Theorem
Given OPTP and a superset of edge directions D of a well-
described polytope P ⊆ Rd, the edge skeleton of P can be
computed in oracle total polynomial-time

O
(
n|D|

(
T + LP(d3|D| 〈B〉) + d logn

))
,

• n the number of vertices of P,

• T : runtime of oracle conversion algorithm for P and D,

• 〈B〉 is the binary encoding length of the vector set P and D,

• LP(〈A〉+ 〈b〉+ 〈c〉) runtime of max cTx over {x : Ax ≤ b}.
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Applications

Corollary

The edge skeleton of resultant, secondary polytopes can be
computed in oracle total polynomial-time.

Corollary

The edge skeletons of polytopes appearing in convex combinatorial
optimization [Rothblum-Onn ’04] and convex integer
programming [De Loera et al. ’09] problems can be computed in
oracle total polynomial-time.
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The volume computation problem

Input: Polytope P := {x ∈ Rd | Ax ≤ b} A ∈ Rm×d, b ∈ Rm

Output: Volume of P

• #-P hard for vertex and for halfspace repres. [DyerFrieze’88]

• randomized poly-time algorithm approximates the volume of a
convex body with high probability and arbitrarily small relative
error [DyerFriezeKannan’91] O∗(d23) → O∗(d4) [LovVemp’04]

Implementations

• Exact (VINCI, Qhull, etc.) cannot compute in high
dimensions (e.g. > 20)

• Randomized ([CousinsVempala’14], [EmirisF’14]) compute in
high dimensions (e.g. 100)
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How do we compute a random point in a polytope P?

• easy for simple shapes like simplex or cube

• BUT for arbitrary polytopes we need random walks
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Random Directions Hit-and-Run (RDHR)

x

`

P

B

Input: point x ∈ P
Output: new point x ′ ∈ P

1. line ` through x, uniform on B(x, 1)

2. set x ′ to be a uniform disrtibuted
point on P ∩ `

Iterate this for W steps.
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Random Directions Hit-and-Run (RDHR)

x

`

P
Input: point x ∈ P

Output: new point x ′ ∈ P
1. line ` through x, uniform on B(x, 1)

2. set x ′ to be a uniform disrtibuted
point on P ∩ `

Iterate this for W steps.

• x ′ is unif. random distrib. in P after W = O∗(d3) steps,
where O∗(·) hides log factors [LovaszVempala’06]

• to generate many random points iterate this procedure
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Multiphase Monte Carlo (Sequence of balls)

B = B(c, r)

B′ = B(c, ρ)

P

• B(c, 2i/d), i = α,α+ 1, . . . , β,
α = bd log rc, β = dd log ρe

• Pi := P ∩ B(c, 2i/d), i = α,α+ 1, . . . , β,
Pα = B(c, 2α/d) ⊆ B(c, r)
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Multiphase Monte Carlo (Generate/count random points)

P0 = B(c, r)

B′ = B(c, ρ)

P

P1

• B(c, 2i/d), i = α,α+ 1, . . . , β,
α = bd log rc, β = dd log ρe

• Pi := P ∩ B(c, 2i/d), i = α,α+ 1, . . . , β,
Pα = B(c, 2α/d) ⊆ B(c, r)

1. Generate rand. points in Pi

2. Count how many rand. points in Pi fall
in Pi−1

vol(P) = vol(Pα)

β∏
i=α+1

vol(Pi)

vol(Pi−1)



Introduction Algorithm for resultant polytopes Edge-skeleton Volume 4-d resultant polytopes Predicates

Multiphase Monte Carlo (Generate/count random points)

P0 = B(c, r)

B′ = B(c, ρ)

P

P1

• B(c, 2i/d), i = α,α+ 1, . . . , β,
α = bd log rc, β = dd log ρe

• Pi := P ∩ B(c, 2i/d), i = α,α+ 1, . . . , β,
Pα = B(c, 2α/d) ⊆ B(c, r)

1. Generate rand. points in Pi

2. Count how many rand. points in Pi fall
in Pi−1

vol(P) = vol(Pα)

β∏
i=α+1

vol(Pi)

vol(Pi−1)



Introduction Algorithm for resultant polytopes Edge-skeleton Volume 4-d resultant polytopes Predicates

Contributions

Some modifications towards practicality

• W = b10+ d/10c random walk steps (vs. O∗(d3) which hides
constant 1011) achieve < 1% error in up to 100 dim.

• implement boundary oracles with O(m) runtime in coordinate
(vs. random) directions hit-and-run

Highlights of experimental results

• approximate the volume of a series of polytopes (cubes,
random, cross, Birkhoff) for d < 100 in <2 hrs with mean
approximation error <1%

• Compute the volume of Birkhoff polytopes B11, . . . , B15 in few
hrs whereas exact methods have only computed that of B10 by
specialized software in ∼ 1 year of parallel computation
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Existing work

• [GKZ’90] Univariate case / general dimensional N(R)

• [Sturmfels’94] Multivariate case / up to 3 dimensional N(R)
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One step beyond... 4-dimensional N(R)

• Polytope P ⊆ R4; f-vector is the vector of its face cardinalities.

• Call vertices, edges, ridges, facets, the 0,1,2,3-d, faces of P.

• f-vectors of 4-dimensional N(R) (computed with ResPol)
(5, 10, 10, 5)
(6, 15, 18, 9)
(8, 20, 21, 9)
(9, 22, 21, 8)
.
.
.
(17, 49, 48, 16)
(17, 49, 49, 17)
(17, 50, 50, 17)
(18, 51, 48, 15)
(18, 51, 49, 16)
(18, 52, 50, 16)
(18, 52, 51, 17)
(18, 53, 51, 16)

(18, 53, 53, 18)
(18, 54, 54, 18)
(19, 54, 52, 17)
(19, 55, 51, 15)
(19, 55, 52, 16)
(19, 55, 54, 18)
(19, 56, 54, 17)
(19, 56, 56, 19)
(19, 57, 57, 19)
(20, 58, 54, 16)
(20, 59, 57, 18)
(20, 60, 60, 20)
(21, 62, 60, 19)
(21, 63, 63, 21)
(22, 66, 66, 22)
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• Call vertices, edges, ridges, facets, the 0,1,2,3-d, faces of P.

• f-vectors of 4-dimensional N(R) (computed with ResPol)
(5, 10, 10, 5)
(6, 15, 18, 9)
(8, 20, 21, 9)
(9, 22, 21, 8)
.
.
.
(17, 49, 48, 16)
(17, 49, 49, 17)
(17, 50, 50, 17)
(18, 51, 48, 15)
(18, 51, 49, 16)
(18, 52, 50, 16)
(18, 52, 51, 17)
(18, 53, 51, 16)

(18, 53, 53, 18)
(18, 54, 54, 18)
(19, 54, 52, 17)
(19, 55, 51, 15)
(19, 55, 52, 16)
(19, 55, 54, 18)
(19, 56, 54, 17)
(19, 56, 56, 19)
(19, 57, 57, 19)
(20, 58, 54, 16)
(20, 59, 57, 18)
(20, 60, 60, 20)
(21, 62, 60, 19)
(21, 63, 63, 21)
(22, 66, 66, 22)
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Main result

Theorem
Given A0, A1, . . . , An ⊂ Zn with N(R) of dimension 4. Then N(R)
are degenerations of the polytopes in following cases.

(i) All |Ai| = 2, except for one with cardinality 5, is a 4-simplex
with f-vector (5, 10, 10, 5).

(ii) All |Ai| = 2, except for two with cardinalities 3 and 4, has
f-vector (10, 26, 25, 9).

(iii) All |Ai| = 2, except for three with cardinality 3, maximal
number of ridges is f̃2 = 66 and of facets f̃3 = 22. Moreover,
22 ≤ f̃0 ≤ 28, and 66 ≤ f̃1 ≤ 72. The lower bounds are tight.

• Degenarations can only decrease the number of faces.

• Focus on new case (iii), which reduces to n = 2 and each
|Ai| = 3.

• Generic upper bound for vertices yields 6608 [Sturmfels’94].
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Tool (1): N(R) faces and subdivisions

A subdivision S of A0 +A1 + · · ·+An is mixed when its cells are
Minkowski sums of Ai’s subsets.

Example

A0

A1

A2 NOT fine mixed subdivision S of A0 + A1 + A2

Proposition (Sturmfels’94)

A regular mixed subdivision S of A0 +A1 + · · ·+An corresponds
to a face of N(R).
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Tool (2): Input genericity

Proposition

Input genericity maximizes the number of resultant polytope faces.

Proof idea

N(R∗) f -vector: (18, 52, 50, 16)

N(R) f -vector: (14, 38, 36, 12)

p

p∗

A0 A1 A2

A0 A1 A2
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Facets of 4-d resultant polytopes

Lemma
A 4-dimensioanl N(R) have at most

• 9 resultant facets: 3-d N(R)

• 9 prism facets: 2-d N(R) (triangle) + 1-d N(R)

• 4 zonotope facets: Mink. sum of 1-d N(R)s
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Outline

Introduction

An algorithm for computing projections of resultant polytopes

Edge-skeleton computation for polytopes defined by oracles

A practical volume algorithm for high dimensional polytopes

Combinatorics of 4-d resultant polytopes

High-dimensional predicates: algorithms and software
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Geometric algorithms and predicates

Setting

• geometric algorithms → sequence of geometric predicates

• Hi-dim: as dimension grows predicates become more expensive

Examples
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Geometric algorithms and predicates

Setting

• geometric algorithms → sequence of geometric predicates

• Hi-dim: as dimension grows predicates become more expensive

Examples

• Orientation: Does
c lie on, left or
right of ab?∣∣∣∣∣∣
ax ay 1

bx by 1

cx cy 1

∣∣∣∣∣∣ R 0
a

b

c
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Determinant computation

Given matrix A ⊆ Rd×d

• Theory: State-of-the-art O(dω), ω ∼ 2.3727 [Williams’12]

• Practice: Gaussian elimination, O(d3)
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Dynamic Determinant Computations

One-column update problem

Given matrix A ⊆ Rd×d, answer queries for det(A) when i-th
column of A, (A)i, is replaced by u ⊆ Rd.
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Dynamic Determinant Computations

One-column update problem

Given matrix A ⊆ Rd×d, answer queries for det(A) when i-th
column of A, (A)i, is replaced by u ⊆ Rd.

Solution: Sherman-Morrison formula (1950)

A ′−1 = A−1 −
(A−1(u− (A)i)) (e

T
iA

−1)

1+ eTiA
−1(u− (A)i)

det(A ′) = (1+ eTiA
−1(u− (A)i)det(A)

• Only vector×vector, vector×matrix → Complexity: O(d2)



Introduction Algorithm for resultant polytopes Edge-skeleton Volume 4-d resultant polytopes Predicates

Incremental convex hull: REVISITED

p2 p5

p2 p4 p5

1 1 1

A =

p1
p3

p4

• Orientation(p2, p4, p5) = sgn(det(A))
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Incremental convex hull: REVISITED

p2 p5

p6 p4 p5

1 1 1

A′ =

p1
p3

p4

p6

• Orientation(p6, p4, p5) = sgn(det(A
′)) in O(d2)

• Store det(A), A−1 in a hash table

• Update det(A ′), A ′−1 (Sherman-Morrison)
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Experiments

Determinants (1-column updates)

• 2 and 7 times faster than state-of-the-art software (Eigen,
Linbox, Maple) in rational and integer arithmetic resp.

Convex hull

• Plug into triangulation/CGAL improving performance

• Outperforms polymake, lrs, cdd in most cases with generic
input in d ≤ 7

Point location

• Improves up to 78 times in triangulation/CGAL, using up
to 50 times more memory, d ≤ 11
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