
Constructing Polytopes via a Vertex Oracle

Vissarion Fisikopoulos

Joint work with I.Z. Emiris, C. Konaxis (now U. Crete) and

L. Peñaranda (now IMPA, Rio)

Department of Informatics, University of Athens

Mittagsseminar, ETH, Zurich, 12.Jul.2012

Main actor: resultant polytope

I Geometry: Minkowski summands of secondary polytopes, equival.
classes of secondary vertices, generalize Birkhoff polytopes

I Motivation: useful to express the solvability of polynomial systems

I Applications: discriminant and resultant computation, implicitization
of parametric hypersurfaces

Enneper’s Minimal Surface

Existing work

I Theory of resultants, secondary polytopes, Cayley trick [GKZ ’94]

I TOPCOM [Rambau ’02] computes all vertices of secondary polytope.

I [Michiels & Verschelde DCG’99] coarse equivalence classes of
secondary polytope vertices.

I [Michiels & Cools DCG’00] decomposition of Σ(A) in Minkoski
summands, including N(R).

I Tropical geometry [Sturmfels-Yu ’08]: algorithms for resultant
polytope (GFan library) [Jensen-Yu ’11] and discriminant polytope
(TropLi software) [Rincn ’12].

What is a resultant polytope?

I Given n + 1 point sets A0,A1, . . . ,An ⊂ Zn

A0

A1

a1

a3

a2

a4

What is a resultant polytope?

I Given n + 1 point sets A0,A1, . . . ,An ⊂ Zn

I A =
⋃n

i=0(Ai × {ei}) ⊂ Z2n where ei = (0, . . . , 1, . . . , 0) ⊂ Zn

A

A0

A1

a1

a3

a3, 1

a1, 0

a2

a4

a4, 1

a2, 0

What is a resultant polytope?

I Given n + 1 point sets A0,A1, . . . ,An ⊂ Zn

I A =
⋃n

i=0(Ai × {ei}) ⊂ Z2n where ei = (0, . . . , 1, . . . , 0) ⊂ Zn

I Given T a triangulation of conv(A), a cell is a-mixed if it contains 2
vertices from Aj , j 6= i , and one vertex a ∈ Ai .

A

A0

A1

a1 a2

a3 a4

a3, 1 a4, 1

a1, 0 a2, 0

What is a resultant polytope?

I Given n + 1 point sets A0,A1, . . . ,An ⊂ Zn

I A =
⋃n

i=0(Ai × {ei}) ⊂ Z2n where ei = (0, . . . , 1, . . . , 0) ⊂ Zn

I Given T a triangulation of conv(A), a cell is a-mixed if it contains 2
vertices from Aj , j 6= i , and one vertex a ∈ Ai .

I ρT (a) =
∑

a−mixed

σ∈T :a∈σ
vol(σ) ∈ N, a ∈ A

ρT = (0, 2, 1, 0)

A

A0

A1

a1 a2

a3 a4

a3, 1 a4, 1

a1, 0 a2, 0

What is a resultant polytope?

I Given n + 1 point sets A0,A1, . . . ,An ⊂ Zn

I A =
⋃n

i=0(Ai × {ei}) ⊂ Z2n where ei = (0, . . . , 1, . . . , 0) ⊂ Zn

I Given T a triangulation of conv(A), a cell is a-mixed if it contains 2
vertices from Aj , j 6= i , and one vertex a ∈ Ai .

I ρT (a) =
∑

a−mixed

σ∈T :a∈σ
vol(σ) ∈ N, a ∈ A

I Resultant polytope N(R) = conv(ρT : T triang. of conv(A))

A N(R)

A0

A1

Connection with Algebra

I The support of a polynomial is the the set of exponents of its
monomials with non-zero coefficient.

I The resultant R is the polynomial in the coefficients of a system of
polynomials which is zero iff the system has a common solution.

I The resultant polytope N(R), is the convex hull of the support of R.

A0

A1

N(R) R(a, b, c, d, e) = ad2b+ c2b2 − 2caeb+ a2e2

f0(x) = ax2 + b

f1(x) = cx2 + dx+ e

Connection with Algebra

I The support of a polynomial is the the set of exponents of its
monomials with non-zero coefficient.

I The resultant R is the polynomial in the coefficients of a system of
polynomials which is zero iff the system has a common solution.

I The resultant polytope N(R), is the convex hull of the support of R.

A0

A1

N(R)

f0(x, y) = ax+ by + c

f1(x, y) = dx+ ey + f

f2(x, y) = gx+ hy + iA2

a b c
d e f
g h i

4-dimensional Birkhoff polytope

R(a, b, c, d, e, f, g, h, i) =

Connection with Algebra

I The support of a polynomial is the the set of exponents of its
monomials with non-zero coefficient.

I The resultant R is the polynomial in the coefficients of a system of
polynomials which is zero iff the system has a common solution.

I The resultant polytope N(R), is the convex hull of the support of R.

A0

A1

N(R)

f0(x, y) = axy2 + x4y + c

f1(x, y) = dx+ ey

f2(x, y) = gx2 + hy + iA2

NP-hard to compute the resultant
in the general case

The idea of the algorithm

Input: A ∈ Z2n defined by A0,A1, . . . ,An ⊂ Zn

Simplistic method:

I compute the secondary polytope Σ(A)

I many-to-one relation between vertices of Σ(A) and N(R) vertices

Cannot enumerate 1 representative per class by walking on secondary
edges

The idea of the algorithm

Input: A ∈ Z2n defined by A0,A1, . . . ,An ⊂ Zn

New Algorithm:

I Vertex oracle: given a direction vector compute a vertex of N(R)

I Output sensitive: computes only one triangulation of A per N(R)
vertex + one per N(R) facet

I Computes projections of N(R) or Σ(A)

A basic tool for the oracle:

Regular triangulations of A ⊂ Rd are obtained by projecting the lower (or
upper) hull of A lifted to Rd+1 via a generic lifting function w ∈ (R|A|)×.

w = (2, 1, 4)w = (2, 6, 4)

A

If w is not generic then we construct a regular subdivision.

The Vertex (Optimization) Oracle

Input: A ⊂ Z2n, direction w ∈ (R|A|)×

Output: vertex ∈ N(R), extremal wrt w

1. use w as a lifting to construct regular subdivision S of A

w

face of Σ(A)

S

The Vertex (Optimization) Oracle

Input: A ⊂ Z2n, direction w ∈ (R|A|)×

Output: vertex ∈ N(R), extremal wrt w

1. use w as a lifting to construct regular subdivision S of A
2. refine S into triangulation T of A

w

face of Σ(A)

T

T ′

S

The Vertex (Optimization) Oracle

Input: A ⊂ Z2n, direction w ∈ (R|A|)×

Output: vertex ∈ N(R), extremal wrt w

1. use w as a lifting to construct regular subdivision S of A
2. refine S into triangulation T of A
3. return ρT ∈ N|A|

N(R)

w

face of Σ(A)

T

T ′

S

ρT

The Vertex (Optimization) Oracle

Input: A ⊂ Z2n, direction w ∈ (R|A|)×

Output: vertex ∈ N(R), extremal wrt w

1. use w as a lifting to construct regular subdivision S of A
2. refine S into triangulation T of A
3. return ρT ∈ N|A|

Lemma
Oracle’s output is

I always a vertex of the target polytope,

I extremal wrt w.

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

N(R)

Q

Q

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

initialization:

I Q ⊂ N(R)

I dim(Q)=dim(N(R))

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

N(R)

Q

Q

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

2 kinds of hyperplanes of QH :

I legal if it supports facet
⊂ N(R)

I illegal otherwise

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}

N(R)

QQ

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Extending an illegal facet

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
I if v /∈ QV ∩ H then QH ← CH(QV ∪ {v}) else H is legal

N(R)

QQ

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Extending an illegal facet

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
I if v /∈ QV ∩ H then QH ← CH(QV ∪ {v}) else H is legal

N(R)

QQ

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Validating a legal facet

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
I if v /∈ QV ∩ H then QH ← CH(QV ∪ {v}) else H is legal

N(R)

QQ

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Validating a legal facet

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
I if v /∈ QV ∩ H then QH ← CH(QV ∪ {v}) else H is legal

N(R)

QQ

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
I if v /∈ QV ∩ H then QH ← CH(QV ∪ {v}) else H is legal

N(R)

QQ

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

At any step, Q is an inner
approximation . . .

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
I if v /∈ QV ∩ H then QH ← CH(QV ∪ {v}) else H is legal

N(R)

QQ

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

At any step, Q is an inner
approximation . . . from which we
can compute an outer approximation
Qo .

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
I if v /∈ QV ∩ H then QH ← CH(QV ∪ {v}) else H is legal

N(R)

QQ

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
I if v /∈ QV ∩ H then QH ← CH(QV ∪ {v}) else H is legal

N(R)

QQ

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
I if v /∈ QV ∩ H then QH ← CH(QV ∪ {v}) else H is legal

N(R)

QQ

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
I if v /∈ QV ∩ H then QH ← CH(QV ∪ {v}) else H is legal

N(R)

QQ

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
I if v /∈ QV ∩ H then QH ← CH(QV ∪ {v}) else H is legal

N(R)

QQ

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
I if v /∈ QV ∩ H then QH ← CH(QV ∪ {v}) else H is legal

N(R)

QQ

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
I if v /∈ QV ∩ H then QH ← CH(QV ∪ {v}) else H is legal

N(R)

QQ

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
I if v /∈ QV ∩ H then QH ← CH(QV ∪ {v}) else H is legal

N(R)

QQ

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
I if v /∈ QV ∩ H then QH ← CH(QV ∪ {v}) else H is legal

N(R)

QQ

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
I if v /∈ QV ∩ H then QH ← CH(QV ∪ {v}) else H is legal

N(R)

QQ

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
I if v /∈ QV ∩ H then QH ← CH(QV ∪ {v}) else H is legal

N(R)

QQ

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
I if v /∈ QV ∩ H then QH ← CH(QV ∪ {v}) else H is legal

N(R)

QQ

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
I if v /∈ QV ∩ H then QH ← CH(QV ∪ {v}) else H is legal

N(R)

QQ

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
I if v /∈ QV ∩ H then QH ← CH(QV ∪ {v}) else H is legal

N(R)

QQ

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Qo

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

Complexity

Theorem
We compute the Vertex- and Halfspace-representations of N(R), as well
as a triangulation T of N(R), in

O∗(m5 |vtx(N(R))| · |T |2),

where m = dimN(R), and |T | the number of full-dim faces of T .

Elements of proof

I Computation is done in dimension m = |A| − 2n + 1, N(R) ⊂ R|A|.
I At most ≤ vtx(N(R)) + fct(N(R)) oracle calls (Lem. 9).

I Beneath-and-Beyond algorithm for converting V-rep. to H-rep
[Joswig ’02].

ResPol package

I C++

I towards high-dimensional

I triangulation [Boissonnat,Devillers,Hornus]
extreme points d [Gärtner] (preprocessing step)

I Hashing of determinantal predicates: optimizing sequences of similar
determinants

I http://sourceforge.net/projects/respol

Output-sensitivity

I oracle calls ≤ vtx(N(R)) + fct(N(R))

I output vertices bound polynomially the output triangulation size

I subexponential runtime wrt to input points (L), output vertices (R)

0.01

0.1

1

10

100

0 50 100 150 200 250 300 350 400 450

tim
e
 (

s
e
c
)

Number of output vertices

m=3
m=4
m=5

Hashing and Gfan

I hashing determinants speeds ≤ 10-100x when dim(N(R)) = 3, 4

I faster than Gfan [Yu-Jensen’11] for dimN(R) ≤ 6, else competitive

dim(N(R)) = 4:

Computing the convex hull of N(R)

I triangulation, polymake beneath-beyond (bb), cdd, lrs

0.01

0.1

1

10

100

0 500 1000 1500 2000 2500 3000

ti
m

e
(s

ec
)

Number of points

bb
cdd
lrs

triang_off

triang_on

dim(N(R)) = 4

f-vectors of 4-dimensional N(R)

(6, 15, 18, 9)
(8, 20, 21, 9)
(9, 22, 21, 8)
.
.
.
(17, 48, 45, 14)
(17, 48, 46, 15)
(17, 48, 47, 16)
(17, 49, 47, 15)
(17, 49, 48, 16)
(17, 49, 49, 17)
(17, 50, 50, 17)
(18, 51, 48, 15)
(18, 51, 49, 16)
(18, 52, 50, 16)
(18, 52, 51, 17)
(18, 53, 51, 16)
(18, 53, 53, 18)

(18, 54, 54, 18)
(19, 54, 52, 17)
(19, 55, 51, 15)
(19, 55, 52, 16)
(19, 55, 54, 18)
(19, 56, 54, 17)
(19, 56, 56, 19)
(19, 57, 57, 19)
(20, 58, 54, 16)
(20, 59, 57, 18)
(20, 60, 60, 20)
(21, 62, 60, 19)
(21, 63, 63, 21)
(22, 66, 66, 22)

Open
Almost symmetric f-vector?

Ongoing and future work

I Extension of hashing determinants to CH computations
(with L.Peñaranda) (to appear in ESA’12)

I Combinatorial characterization of 4-dimensional resultant polytopes
(with I.Z.Emiris, A.Dickenstein)

I Computation of discriminant polytopes
(with I.Z.Emiris, A.Dickenstein)

I Membership oracles from vertex (optimization) oracles
(with B.Gärtner)

References

I The paper: “An output-sensitive algorithm for computing
projections of resultant polytopes.” in SoCG’12

I The code: http://respol.sourceforge.net

http://respol.sourceforge.net

The end. . .

(figure courtesy of M.Joswig)

Facet and vertex graph of the largest 4-dimensional resultant polytope

Thank You !

