Constructing Polytopes via a Vertex Oracle

Vissarion Fisikopoulos

Joint work with I.Z. Emiris, C. Konaxis (now U. Crete) and
L. Pefiaranda (now IMPA, Rio)

Department of Informatics, University of Athens

‘ L

Mittagsseminar, ETH, Zurich, 12.Jul.2012

Main actor: resultant polytope

» Geometry: Minkowski summands of secondary polytopes, equival.
classes of secondary vertices, generalize Birkhoff polytopes

» Motivation: useful to express the solvability of polynomial systems

» Applications: discriminant and resultant computation, implicitization
of parametric hypersurfaces

Enneper’'s Minimal Surface

Existing work

» Theory of resultants, secondary polytopes, Cayley trick [GKZ '94]
» TOPCOM [Rambau '02] computes all vertices of secondary polytope.

> [Michiels & Verschelde DCG'99] coarse equivalence classes of
secondary polytope vertices.

> [Michiels & Cools DCG'00] decomposition of ¥X(.A) in Minkoski
summands, including N(R).

» Tropical geometry [Sturmfels-Yu '08]: algorithms for resultant
polytope (GFan library) [Jensen-Yu '11] and discriminant polytope
(TropLi software) [Rincn "12].

What is a resultant polytope?

» Given n+ 1 point sets Ag, Ay,..., A, CZ"

AO a] e~ — e a2

Al a3z e~ — — — e ay

What is a resultant polytope?

» Given n+ 1 point sets Ag, Ay,..., A, CZ"

» A=U"Lo(Ai x {ej}) C Z>" where ¢; = (0, ..

AO a] e — e @2

Al a3 e~ — — —e %4
a3,1 ¢— — — — G4,1
3> ? -

| 7/
a1,0 e — & 2,0

'71’

5,0 cz"

What is a resultant polytope?

» Given n+ 1 point sets Ag, Ay,..., A, CZ"
» A=U"Lo(Ai x {&}) C Z>" where ¢ = (0,...,1,...,0) C Z"

» Given T a triangulation of conv(.A), a cell is a-mixed if it contains 2
vertices from A;, j # i, and one vertex a € A;.

AO al e~ — e a2

Al a3 e~ — — — e Q4

a3,1?_ — _7.a4,1

| s
a1,0e- — & ag,0

What is a resultant polytope?

v

Given n+ 1 point sets Ag, A1,..., A, CZ"
A=ULy(Ai x {e&}) C Z*" where &; = (0,...,1,...,0) C Z"

Given T a triangulation of conv(.A), a cell is a-mixed if it contains 2
vertices from Aj, j # i, and one vertex a € A;.

v

v

> pr(a) =) s vol(c) €N, ac A
oel:aco
AO a]l &~ — e a2 pT:(0525170)
Al a3 e~ — — — e a4y
a3,1?___7.a4,1

A

| 7/
a1,0e- — & an,0

What is a resultant polytope?

v

Given n+ 1 point sets Ag, Ay,..., Ay CZ"

» A=U"Lo(Ai x {e}) C Z>" where ¢; = (0,...,1,...,0) C Z"

Given T a triangulation of conv(.A), a cell is a-mixed if it contains 2
vertices from Aj, j # i, and one vertex a € A;.

p1(8) =] smiea VOl(o) €N, a€e A

oc€T:aco

v

v

v

Resultant polytope N(R) = conv(pr : T triang. of conv(.A))

f40 — — o .TEE;::;;?

141 — — — — o

— — — —e

A i _(/ N(R) 7

Connection with Algebra

» The support of a polynomial is the the set of exponents of its
monomials with non-zero coefficient.

» The resultant R is the polynomial in the coefficients of a system of
polynomials which is zero iff the system has a common solution.

> The resultant polytope N(R), is the convex hull of the support of R.

Ao - fo(z) =ax?+b
Ay . e W filz) = cx?+dr+e

N(R) I>‘ R(a,b,c,d,e) = ad®*b + c*b? — 2caeb + a?e?

Connection with Algebra

» The support of a polynomial is the the set of exponents of its

monomials with non-zero coefficient.

» The resultant R is the polynomial in the coefficients of a system of
polynomials which is zero iff the system has a common solution.

» The resultant polytope N(R), is the convex hull of the support of R.

Ao I‘: folz,y) =ax+by+c
Ax rg. filz,y) =dz+ey+ f

fa(z,y) = gz + hy +i

R(CL,b,C,d,G,f,g,h,’i) =

4-dimensional Birkhoff polytope

abc
de f
ghi

Connection with Algebra

» The support of a polynomial is the the set of exponents of its
monomials with non-zero coefficient.

» The resultant R is the polynomial in the coefficients of a system of
polynomials which is zero iff the system has a common solution.

> The resultant polytope N(R), is the convex hull of the support of R.

» <
Ao ‘/: - o folx,y) = azy® + 2ty + ¢
N file,y) = do+ ey
Ay I\::* fo(z,y) = gx® + hy + i
N(R) f? NP—hard to compute the resultant
in the general case

The idea of the algorithm
Input: A € Z2" defined by Ag, A1,...,A, CZ"
Simplistic method:
> compute the secondary polytope ¥(.A)
> many-to-one relation between vertices of £(.A) and N(R) vertices

Cannot enumerate 1 representative per class by walking on secondary
edges

The idea of the algorithm

Input: A € Z?" defined by Ag, Ay,..., A, CZ"
New Algorithm:

> Vertex oracle: given a direction vector compute a vertex of N(R)

» Output sensitive: computes only one triangulation of A per N(R)
vertex + one per N(R) facet

» Computes projections of N(R) or X(A)

A basic tool for the oracle:

Regular triangulations of A C R? are obtained by projecting the lower (or
upper) hull of A lifted to R*! via a generic lifting function w € (RI4)*.

w=(2,6,4) w=(2,1,4)

If w is not generic then we construct a regular subdivision.

The Vertex (Optimization) Oracle

Input: A C Z2", direction w € (RI41)*
Output: vertex € N(R), extremal wrt w

1. use w as a lifting to construct regular subdivision S of A

RIAl

A

face of X(A)

/

The Vertex (Optimization) Oracle

Input: A C Z2", direction w € (RI41)*
Output: vertex € N(R), extremal wrt w

1. use w as a lifting to construct regular subdivision S of A
2. refine S into triangulation T of A

RIAl
T
/ :
face of 3(.A)

The Vertex (Optimization) Oracle

Input: A C Z2", direction w € (RI4)*
Output: vertex € N(R), extremal wrt w

1. use w as a lifting to construct regular subdivision S of A
2. refine S into triangulation T of A
3. return pr € NI

-
RIA RN

T // RS N prT

,
y
y
s \ J
\
w T ‘\
/ " \

face of X(A) IR

.4

=
=

The Vertex (Optimization) Oracle

Input: A C Z2", direction w € (RI4)*
Output: vertex € N(R), extremal wrt w

1. use w as a lifting to construct regular subdivision S of A
2. refine S into triangulation T of A
3. return p1 € NI

Lemma
Oracle’s output is

» always a vertex of the target polytope,

> extremal wrt w.

Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)

1. initialization step

, initialization:
» Q C N(R)
> dim(Q)=dim(N(R))

Incremental Algorithm

Input: A
Output: H-rep. Qp, V-rep. Qy of @ = N(R)

1. initialization step
2. all hyperplanes of Qy are illegal

K 2 kinds of hyperplanes of Qp:
) > legal if it supports facet
C N(R)

> illegal otherwise

Incremental Algorithm

Input: A
Output: H-rep. Qpu, V-rep. Qy of @ = N(R)

1. initialization step

2. all hyperplanes of Qp are illegal

3. while 3Jillegal hyperplane H C Qg with outer normal w do
> call oracle for w and compute v, Qv + Qv U {v}

Extending an illegal facet

Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)
1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
» if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

Extending an illegal facet

Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)
1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
» if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

Validating a legal facet

Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)
1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
» if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

Validating a legal facet

Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)
1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
» if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)
1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
» if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

At any step, @ is an inner
approximation . ..

Incremental Algorithm

Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)

1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
> if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

At any step, @ is an inner
approximation ... from which we
can compute an outer approximation

Qo-

Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)
1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
» if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)
1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
» if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)
1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
» if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)
1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
» if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)
1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
» if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

Incremental Algorithm

Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)

1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
» if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

Incremental Algorithm

Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)

1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
» if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

Incremental Algorithm

Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)

1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
» if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)
1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
» if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)
1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
» if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)
1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
» if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)
1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
» if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)
1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
» if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)
1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
» if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

Complexity

Theorem

We compute the Vertex- and Halfspace-representations of N(R), as well
as a triangulation T of N(R), in

O*(m® [vix(N(R))| - | TI?),
where m = dim N(R), and | T| the number of full-dim faces of T.
Elements of proof

» Computation is done in dimension m = |A| —2n+ 1, N(R) C Rl
> At most < vtx(N(R)) + fct(N(R)) oracle calls (Lem. 9).

» Beneath-and-Beyond algorithm for converting V-rep. to H-rep
[Joswig '02].

ResPol package E %

> C++
» towards high-dimensional BB

» triangulation [Boissonnat,Devillers,Hornus]
extreme_points_d [Gartner] (preprocessing step)

» Hashing of determinantal predicates: optimizing sequences of similar
determinants

> http://sourceforge.net/projects/respol

Output-sensitivity

» oracle calls < vitx(N(R)) + fct(N(R))
> output vertices bound polynomially the output triangulation size

> subexponential runtime wrt to input points (L), output vertices (R)

10000 .
o

m:
1000 fM=5 e X

time (sec)
5
x

0.1 F

0.01 n n n "
10 15 20 25 30 35

Number of input points |A]

time (sec)

100

0.1 5,

0.01

m=3
m=4 x
m=5 «
k3 mex»(‘xx
; o S BT
F e R X x
att
‘§§§¢
o
%v
3
0 50 100 150 200 250 300 350 400 450

Number of output vertices

Hashing and Gfan

> hashing determinants speeds < 10-100x when dim(N(R)) = 3,4
> faster than Gfan [Yu-Jensen'l1] for dimN(R) < 6, else competitive

100000
10000 ¢
1000 F
100 |
[
£
= 10 L
1t
/ Respol-hash ——
Y Respol-no hash]
' Gfan-NFS| -
Gfan-TTR =
0.01 . ‘

10 15 20 25 30 35 40 45
dim(N(R)) = 4: Number of points [A|

Computing the convex hull of N(R)

> triangulation, polymake beneath-beyond (bb), cdd, 1rs

100 r 1
> 10 B
2
g
g 1 |
| ' triang_on —— |
0.1 ¥ b —
cdd ——
Irs —=—
triang_off —=—
001 Il Il Il Il Il

0 500 1000 1500 2000 2500 3000
Number of points

f-vectors of 4-dimensional N(R)

(6, 15, 18, 9) (18, 54, 54, 18)
(8, 20, 21, 9) (19, 54, 52, 17)
(9, 22, 21, 8) (19, 55, 51, 15)
. (19, 55, 52, 16)
(19, 55, 54, 18)
(19, 56, 54, 17)
(17, 48, 45, 14) (19, 56, 56, 19)
(17, 48, 46, 15) (19, 57, 57, 19)
(17, 48, 47, 16) (20, 58, 54, 16)
(17, 49, 47, 15) (20, 59, 57, 18)
(17, 49, 48, 16) (20, 60, 60, 20)
(17, 49, 49, 17) (21, 62, 60, 19)
(17, 50, 50, 17) (21, 63, 63, 21)
(18, 51, 48, 15) (22, 66, 66, 22)
(18, 51, 49, 16)
(18, 52, 50, 16) Open .
(18, 52, 51, 17) Almost symmetric f-vector?
(18, 53, 51, 16)
(18, 53, 53, 18)

Ongoing and future work

v

Extension of hashing determinants to CH computations
(with L.Pefiaranda) (to appear in ESA'12)

Combinatorial characterization of 4-dimensional resultant polytopes
(with 1.Z.Emiris, A.Dickenstein)

» Computation of discriminant polytopes
(with 1.Z.Emiris, A.Dickenstein)

Membership oracles from vertex (optimization) oracles
(with B.Gartner)

v

v

References

» The paper: “An output-sensitive algorithm for computing
projections of resultant polytopes.” in SoCG'12

> The code: http://respol.sourceforge.net

http://respol.sourceforge.net

The end. ..

(figure courtesy of M.Joswig)

Facet and vertex graph of the largest 4-dimensional resultant polytope

Thank You !

