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Main actor: resultant polytope

» Geometry: Minkowski summands of secondary polytopes, equival.
classes of secondary vertices, generalize Birkhoff polytopes

» Motivation: useful to express the solvability of polynomial systems

» Applications: discriminant and resultant computation, implicitization
of parametric hypersurfaces

Enneper’'s Minimal Surface




Existing work

» Theory of resultants, secondary polytopes, Cayley trick [GKZ '94]
» TOPCOM [Rambau '02] computes all vertices of secondary polytope.

> [Michiels & Verschelde DCG'99] coarse equivalence classes of
secondary polytope vertices.

> [Michiels & Cools DCG'00] decomposition of ¥X(.A) in Minkoski
summands, including N(R).

» Tropical geometry [Sturmfels-Yu '08]: algorithms for resultant
polytope (GFan library) [Jensen-Yu '11] and discriminant polytope
(TropLi software) [Rincn "12].



What is a resultant polytope?

» Given n+ 1 point sets Ag, Ay,..., A, CZ"
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What is a resultant polytope?

» Given n+ 1 point sets Ag, Ay,..., A, CZ"

» A=U"Lo(Ai x {ej}) C Z>" where ¢; = (0, ..
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What is a resultant polytope?

» Given n+ 1 point sets Ag, Ay,..., A, CZ"
» A=U"Lo(Ai x {&}) C Z>" where ¢ = (0,...,1,...,0) C Z"

» Given T a triangulation of conv(.A), a cell is a-mixed if it contains 2
vertices from A;, j # i, and one vertex a € A;.
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What is a resultant polytope?

v

Given n+ 1 point sets Ag, A1,..., A, CZ"
A=ULy(Ai x {e&}) C Z*" where &; = (0,...,1,...,0) C Z"

Given T a triangulation of conv(.A), a cell is a-mixed if it contains 2
vertices from Aj, j # i, and one vertex a € A;.
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What is a resultant polytope?

v

Given n+ 1 point sets Ag, Ay,..., Ay CZ"

» A=U"Lo(Ai x {e}) C Z>" where ¢; = (0,...,1,...,0) C Z"

Given T a triangulation of conv(.A), a cell is a-mixed if it contains 2
vertices from Aj, j # i, and one vertex a € A;.
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Resultant polytope N(R) = conv(pr : T triang. of conv(.A))
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Connection with Algebra

» The support of a polynomial is the the set of exponents of its
monomials with non-zero coefficient.

» The resultant R is the polynomial in the coefficients of a system of
polynomials which is zero iff the system has a common solution.

> The resultant polytope N(R), is the convex hull of the support of R.
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Connection with Algebra

» The support of a polynomial is the the set of exponents of its

monomials with non-zero coefficient.

» The resultant R is the polynomial in the coefficients of a system of
polynomials which is zero iff the system has a common solution.

» The resultant polytope N(R), is the convex hull of the support of R.
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4-dimensional Birkhoff polytope
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Connection with Algebra

» The support of a polynomial is the the set of exponents of its
monomials with non-zero coefficient.

» The resultant R is the polynomial in the coefficients of a system of
polynomials which is zero iff the system has a common solution.

> The resultant polytope N(R), is the convex hull of the support of R.

» <
Ao ‘/: - o folx,y) = azy® + 2ty + ¢
N file,y) = do+ ey
Ay I\::* fo(z,y) = gx® + hy + i
N(R) f? NP—hard to compute the resultant
in the general case



The idea of the algorithm
Input: A € Z2" defined by Ag, A1,...,A, CZ"
Simplistic method:
> compute the secondary polytope ¥(.A)
> many-to-one relation between vertices of £(.A) and N(R) vertices

Cannot enumerate 1 representative per class by walking on secondary
edges




The idea of the algorithm

Input: A € Z?" defined by Ag, Ay,..., A, CZ"
New Algorithm:

> Vertex oracle: given a direction vector compute a vertex of N(R)

» Output sensitive: computes only one triangulation of A per N(R)
vertex + one per N(R) facet

» Computes projections of N(R) or X(A)




A basic tool for the oracle:

Regular triangulations of A C R? are obtained by projecting the lower (or
upper) hull of A lifted to R*! via a generic lifting function w € (RI4)*.

w=(2,6,4) w=(2,1,4)

If w is not generic then we construct a regular subdivision.



The Vertex (Optimization) Oracle

Input: A C Z2", direction w € (RI41)*
Output: vertex € N(R), extremal wrt w

1. use w as a lifting to construct regular subdivision S of A
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The Vertex (Optimization) Oracle

Input: A C Z2", direction w € (RI41)*
Output: vertex € N(R), extremal wrt w

1. use w as a lifting to construct regular subdivision S of A
2. refine S into triangulation T of A
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The Vertex (Optimization) Oracle

Input: A C Z2", direction w € (RI4)*
Output: vertex € N(R), extremal wrt w

1. use w as a lifting to construct regular subdivision S of A
2. refine S into triangulation T of A
3. return pr € NI
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The Vertex (Optimization) Oracle

Input: A C Z2", direction w € (RI4)*
Output: vertex € N(R), extremal wrt w

1. use w as a lifting to construct regular subdivision S of A
2. refine S into triangulation T of A
3. return p1 € NI

Lemma
Oracle’s output is

» always a vertex of the target polytope,

> extremal wrt w.



Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)

1. initialization step

, initialization:
» Q C N(R)
> dim(Q)=dim(N(R))




Incremental Algorithm

Input: A
Output: H-rep. Qp, V-rep. Qy of @ = N(R)

1. initialization step
2. all hyperplanes of Qy are illegal

K 2 kinds of hyperplanes of Qp:
) > legal if it supports facet
C N(R)

> illegal otherwise




Incremental Algorithm

Input: A
Output: H-rep. Qpu, V-rep. Qy of @ = N(R)

1. initialization step

2. all hyperplanes of Qp are illegal

3. while 3Jillegal hyperplane H C Qg with outer normal w do
> call oracle for w and compute v, Qv + Qv U {v}

Extending an illegal facet




Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)
1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
» if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

Extending an illegal facet




Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)
1. initialization step
2. all hyperplanes of Qy are illegal
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Validating a legal facet




Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)
1. initialization step
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Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)
1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
» if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

At any step, @ is an inner
approximation . ..




Incremental Algorithm

Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)

1. initialization step
2. all hyperplanes of Qy are illegal
3. while Jillegal hyperplane H C Qy with outer normal w do

> call oracle for w and compute v, Qv < Qv U {v}
> if v ¢ Qv N H then Qn < CH(Qv U {v}) else H is legal

At any step, @ is an inner
approximation ... from which we
can compute an outer approximation

Qo-




Incremental Algorithm
Input: A
Output: H-rep. Qu, V-rep. Qv of @ = N(R)
1. initialization step
2. all hyperplanes of Qy are illegal
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Incremental Algorithm
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Complexity

Theorem

We compute the Vertex- and Halfspace-representations of N(R), as well
as a triangulation T of N(R), in

O*(m® [vix(N(R))| - | TI?),
where m = dim N(R), and | T| the number of full-dim faces of T.
Elements of proof

» Computation is done in dimension m = |A| —2n+ 1, N(R) C Rl
> At most < vtx(N(R)) + fct(N(R)) oracle calls (Lem. 9).

» Beneath-and-Beyond algorithm for converting V-rep. to H-rep
[Joswig '02].



ResPol package E %

> C++
» towards high-dimensional BB

» triangulation [Boissonnat,Devillers,Hornus]
extreme_points_d [Gartner] (preprocessing step)

» Hashing of determinantal predicates: optimizing sequences of similar
determinants

> http://sourceforge.net/projects/respol



Output-sensitivity

» oracle calls < vitx(N(R)) + fct(N(R))
> output vertices bound polynomially the output triangulation size

> subexponential runtime wrt to input points (L), output vertices (R)
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Hashing and Gfan

> hashing determinants speeds < 10-100x when dim(N(R)) = 3,4
> faster than Gfan [Yu-Jensen'l1] for dimN(R) < 6, else competitive
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Computing the convex hull of N(R)

> triangulation, polymake beneath-beyond (bb), cdd, 1rs
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f-vectors of 4-dimensional N(R)

(6, 15, 18, 9) (18, 54, 54, 18)
(8, 20, 21, 9) (19, 54, 52, 17)
(9, 22, 21, 8) (19, 55, 51, 15)
. (19, 55, 52, 16)
(19, 55, 54, 18)
(19, 56, 54, 17)
(17, 48, 45, 14) (19, 56, 56, 19)
(17, 48, 46, 15) (19, 57, 57, 19)
(17, 48, 47, 16) (20, 58, 54, 16)
(17, 49, 47, 15) (20, 59, 57, 18)
(17, 49, 48, 16) (20, 60, 60, 20)
(17, 49, 49, 17) (21, 62, 60, 19)
(17, 50, 50, 17) (21, 63, 63, 21)
(18, 51, 48, 15) (22, 66, 66, 22)
(18, 51, 49, 16)
(18, 52, 50, 16) Open .
(18, 52, 51, 17) Almost symmetric f-vector?
(18, 53, 51, 16)
(18, 53, 53, 18)



Ongoing and future work

v

Extension of hashing determinants to CH computations
(with L.Pefiaranda) (to appear in ESA'12)

Combinatorial characterization of 4-dimensional resultant polytopes
(with 1.Z.Emiris, A.Dickenstein)

» Computation of discriminant polytopes
(with 1.Z.Emiris, A.Dickenstein)

Membership oracles from vertex (optimization) oracles
(with B.Gartner)

v

v

References

» The paper: “An output-sensitive algorithm for computing
projections of resultant polytopes.” in SoCG'12

> The code: http://respol.sourceforge.net


http://respol.sourceforge.net

The end. ..

(figure courtesy of M.Joswig)

Facet and vertex graph of the largest 4-dimensional resultant polytope

Thank You !



