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Main actor: resultant polytope

I Geometry: Minkowski summands of secondary polytopes, equival.
classes of secondary vertices, generalize Birkhoff polytopes

I Motivation: useful to express the solvability of polynomial systems

I Applications: discriminant and resultant computation, implicitization
of parametric hypersurfaces

Enneper’s Minimal Surface



Existing work

I Theory of resultants, secondary polytopes, Cayley trick [GKZ ’94]

I TOPCOM [Rambau ’02] computes all vertices of secondary polytope.

I [Michiels & Verschelde DCG’99] coarse equivalence classes of
secondary polytope vertices.

I [Michiels & Cools DCG’00] decomposition of Σ(A) in Minkoski
summands, including N(R).

I Tropical geometry [Sturmfels-Yu ’08]: algorithms for resultant
polytope (GFan library) [Jensen-Yu ’11] and discriminant polytope
(TropLi software) [Rincn ’12].



What is a resultant polytope?

I Given n + 1 point sets A0,A1, . . . ,An ⊂ Zn
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What is a resultant polytope?

I Given n + 1 point sets A0,A1, . . . ,An ⊂ Zn

I A =
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What is a resultant polytope?

I Given n + 1 point sets A0,A1, . . . ,An ⊂ Zn

I A =
⋃n

i=0(Ai × {ei}) ⊂ Z2n where ei = (0, . . . , 1, . . . , 0) ⊂ Zn

I Given T a triangulation of conv(A), a cell is a-mixed if it contains 2
vertices from Aj , j 6= i , and one vertex a ∈ Ai .
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What is a resultant polytope?

I Given n + 1 point sets A0,A1, . . . ,An ⊂ Zn

I A =
⋃n

i=0(Ai × {ei}) ⊂ Z2n where ei = (0, . . . , 1, . . . , 0) ⊂ Zn

I Given T a triangulation of conv(A), a cell is a-mixed if it contains 2
vertices from Aj , j 6= i , and one vertex a ∈ Ai .

I ρT (a) =
∑

a−mixed

σ∈T :a∈σ
vol(σ) ∈ N, a ∈ A

ρT = (0, 2, 1, 0)
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What is a resultant polytope?

I Given n + 1 point sets A0,A1, . . . ,An ⊂ Zn

I A =
⋃n

i=0(Ai × {ei}) ⊂ Z2n where ei = (0, . . . , 1, . . . , 0) ⊂ Zn

I Given T a triangulation of conv(A), a cell is a-mixed if it contains 2
vertices from Aj , j 6= i , and one vertex a ∈ Ai .

I ρT (a) =
∑

a−mixed

σ∈T :a∈σ
vol(σ) ∈ N, a ∈ A

I Resultant polytope N(R) = conv(ρT : T triang. of conv(A))
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Connection with Algebra

I The support of a polynomial is the the set of exponents of its
monomials with non-zero coefficient.

I The resultant R is the polynomial in the coefficients of a system of
polynomials which is zero iff the system has a common solution.

I The resultant polytope N(R), is the convex hull of the support of R.
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N(R) R(a, b, c, d, e) = ad2b+ c2b2 − 2caeb+ a2e2

f0(x) = ax2 + b

f1(x) = cx2 + dx+ e



Connection with Algebra

I The support of a polynomial is the the set of exponents of its
monomials with non-zero coefficient.

I The resultant R is the polynomial in the coefficients of a system of
polynomials which is zero iff the system has a common solution.

I The resultant polytope N(R), is the convex hull of the support of R.
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f0(x, y) = ax+ by + c

f1(x, y) = dx+ ey + f

f2(x, y) = gx+ hy + iA2
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4-dimensional Birkhoff polytope

R(a, b, c, d, e, f, g, h, i) =



Connection with Algebra

I The support of a polynomial is the the set of exponents of its
monomials with non-zero coefficient.

I The resultant R is the polynomial in the coefficients of a system of
polynomials which is zero iff the system has a common solution.

I The resultant polytope N(R), is the convex hull of the support of R.
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f0(x, y) = axy2 + x4y + c

f1(x, y) = dx+ ey

f2(x, y) = gx2 + hy + iA2

NP-hard to compute the resultant
in the general case



The idea of the algorithm

Input: A ∈ Z2n defined by A0,A1, . . . ,An ⊂ Zn

Simplistic method:

I compute the secondary polytope Σ(A)

I many-to-one relation between vertices of Σ(A) and N(R) vertices

Cannot enumerate 1 representative per class by walking on secondary
edges



The idea of the algorithm

Input: A ∈ Z2n defined by A0,A1, . . . ,An ⊂ Zn

New Algorithm:

I Vertex oracle: given a direction vector compute a vertex of N(R)

I Output sensitive: computes only one triangulation of A per N(R)
vertex + one per N(R) facet

I Computes projections of N(R) or Σ(A)



A basic tool for the oracle:

Regular triangulations of A ⊂ Rd are obtained by projecting the lower (or
upper) hull of A lifted to Rd+1 via a generic lifting function w ∈ (R|A|)×.

w = (2, 1, 4)w = (2, 6, 4)

A

If w is not generic then we construct a regular subdivision.



The Vertex (Optimization) Oracle

Input: A ⊂ Z2n, direction w ∈ (R|A|)×

Output: vertex ∈ N(R), extremal wrt w

1. use w as a lifting to construct regular subdivision S of A
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The Vertex (Optimization) Oracle

Input: A ⊂ Z2n, direction w ∈ (R|A|)×

Output: vertex ∈ N(R), extremal wrt w

1. use w as a lifting to construct regular subdivision S of A
2. refine S into triangulation T of A
3. return ρT ∈ N|A|
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The Vertex (Optimization) Oracle

Input: A ⊂ Z2n, direction w ∈ (R|A|)×

Output: vertex ∈ N(R), extremal wrt w

1. use w as a lifting to construct regular subdivision S of A
2. refine S into triangulation T of A
3. return ρT ∈ N|A|

Lemma
Oracle’s output is

I always a vertex of the target polytope,

I extremal wrt w.



Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step
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I Q ⊂ N(R)

I dim(Q)=dim(N(R))



Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal
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2 kinds of hyperplanes of QH :

I legal if it supports facet
⊂ N(R)

I illegal otherwise



Incremental Algorithm
Input: A

Output: H-rep. QH , V-rep. QV of Q = N(R)

1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
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Extending an illegal facet
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1. initialization step

2. all hyperplanes of QH are illegal

3. while ∃ illegal hyperplane H ⊂ QH with outer normal w do
I call oracle for w and compute v , QV ← QV ∪ {v}
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approximation . . .
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Complexity

Theorem
We compute the Vertex- and Halfspace-representations of N(R), as well
as a triangulation T of N(R), in

O∗(m5 |vtx(N(R))| · |T |2),

where m = dimN(R), and |T | the number of full-dim faces of T .

Elements of proof

I Computation is done in dimension m = |A| − 2n + 1, N(R) ⊂ R|A|.
I At most ≤ vtx(N(R)) + fct(N(R)) oracle calls (Lem. 9).

I Beneath-and-Beyond algorithm for converting V-rep. to H-rep
[Joswig ’02].



ResPol package

I C++

I towards high-dimensional

I triangulation [Boissonnat,Devillers,Hornus]
extreme points d [Gärtner] (preprocessing step)

I Hashing of determinantal predicates: optimizing sequences of similar
determinants

I http://sourceforge.net/projects/respol



Output-sensitivity

I oracle calls ≤ vtx(N(R)) + fct(N(R))

I output vertices bound polynomially the output triangulation size

I subexponential runtime wrt to input points (L), output vertices (R)
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Hashing and Gfan

I hashing determinants speeds ≤ 10-100x when dim(N(R)) = 3, 4

I faster than Gfan [Yu-Jensen’11] for dimN(R) ≤ 6, else competitive

dim(N(R)) = 4:



Computing the convex hull of N(R)

I triangulation, polymake beneath-beyond (bb), cdd, lrs
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f-vectors of 4-dimensional N(R)

(6, 15, 18, 9)
(8, 20, 21, 9)
(9, 22, 21, 8)
.
.
.
(17, 48, 45, 14)
(17, 48, 46, 15)
(17, 48, 47, 16)
(17, 49, 47, 15)
(17, 49, 48, 16)
(17, 49, 49, 17)
(17, 50, 50, 17)
(18, 51, 48, 15)
(18, 51, 49, 16)
(18, 52, 50, 16)
(18, 52, 51, 17)
(18, 53, 51, 16)
(18, 53, 53, 18)

(18, 54, 54, 18)
(19, 54, 52, 17)
(19, 55, 51, 15)
(19, 55, 52, 16)
(19, 55, 54, 18)
(19, 56, 54, 17)
(19, 56, 56, 19)
(19, 57, 57, 19)
(20, 58, 54, 16)
(20, 59, 57, 18)
(20, 60, 60, 20)
(21, 62, 60, 19)
(21, 63, 63, 21)
(22, 66, 66, 22)

Open
Almost symmetric f-vector?



Ongoing and future work

I Extension of hashing determinants to CH computations
(with L.Peñaranda) (to appear in ESA’12)

I Combinatorial characterization of 4-dimensional resultant polytopes
(with I.Z.Emiris, A.Dickenstein)

I Computation of discriminant polytopes
(with I.Z.Emiris, A.Dickenstein)

I Membership oracles from vertex (optimization) oracles
(with B.Gärtner)

References

I The paper: “An output-sensitive algorithm for computing
projections of resultant polytopes.” in SoCG’12

I The code: http://respol.sourceforge.net

http://respol.sourceforge.net


The end. . .

(figure courtesy of M.Joswig)

Facet and vertex graph of the largest 4-dimensional resultant polytope

Thank You !


