Constructing Polytopes via a Vertex Oracle

Vissarion Fisikopoulos

Joint work with I.Z. Emiris, C. Konaxis (now U. Crete) and L. Peñaranda (now IMPA, Rio)

Department of Informatics, University of Athens

Main actor: resultant polytope

- **Geometry:** Minkowski summands of secondary polytopes, equival. classes of secondary vertices, generalize Birkhoff polytopes
- **Motivation:** useful to express the solvability of polynomial systems
- **Applications:** discriminant and resultant computation, implicitization of parametric hypersurfaces
Existing work

- Theory of resultants, secondary polytopes, Cayley trick [GKZ ’94]
- TOPCOM [Rambau ’02] computes all vertices of secondary polytope.
- [Michiels & Cools DCG’00] decomposition of $\Sigma(A)$ in Minkoski summands, including $N(R)$.
- Tropical geometry [Sturmfels-Yu ’08]: algorithms for resultant polytope (GFan library) [Jensen-Yu ’11] and discriminant polytope (TropLi software) [Rincn ’12].
What is a resultant polytope?

- Given \(n + 1 \) point sets \(A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n \)
What is a resultant polytope?

- Given \(n + 1 \) point sets \(A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n \)
- \(\mathcal{A} = \bigcup_{i=0}^{n} (A_i \times \{e_i\}) \subset \mathbb{Z}^{2n} \) where \(e_i = (0, \ldots, 1, \ldots, 0) \subset \mathbb{Z}^n \)

\[
\begin{aligned}
A_0 & \quad a_1 \quad - \quad - \quad - \quad a_2 \\
A_1 & \quad a_3 \quad - \quad - \quad - \quad - \quad a_4 \\
\mathcal{A} & \quad a_3, 1 \quad - \quad - \quad - \quad - \quad a_4, 1 \\
& \quad a_1, 0 \quad - \quad - \quad - \quad a_2, 0
\end{aligned}
\]
What is a resultant polytope?

- Given $n + 1$ point sets $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$
- $\mathcal{A} = \bigcup_{i=0}^{n} (A_i \times \{e_i\}) \subset \mathbb{Z}^{2n}$ where $e_i = (0, \ldots, 1, \ldots, 0) \subset \mathbb{Z}^n$
- Given T a triangulation of $\text{conv}(\mathcal{A})$, a cell is a-mixed if it contains 2 vertices from $A_j, j \neq i$, and one vertex $a \in A_i$.
What is a resultant polytope?

▶ Given \(n + 1 \) point sets \(A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n \)
▶ \(\mathcal{A} = \bigcup_{i=0}^{n} (A_i \times \{e_i\}) \subset \mathbb{Z}^{2n} \) where \(e_i = (0, \ldots, 1, \ldots, 0) \subset \mathbb{Z}^n \)
▶ Given \(T \) a triangulation of \(\text{conv}(\mathcal{A}) \), a cell is \(a \)-mixed if it contains 2 vertices from \(A_j, j \neq i \), and one vertex \(a \in A_i \).
▶ \(\rho_T(a) = \sum_{\sigma \in T: a \in \sigma} \text{vol}(\sigma) \in \mathbb{N}, \quad a \in \mathcal{A} \)

\[
\begin{align*}
A_0 & \quad a_1 \rightarrow - - \rightarrow a_2 \\
A_1 & \quad a_3 \rightarrow - - - \rightarrow a_4 \\
\mathcal{A} & \quad a_3, 1 \rightarrow - - - \rightarrow a_4, 1 \\
& \quad a_1, 0 \rightarrow - - \rightarrow a_2, 0 \\
\end{align*}
\]

\(\rho_T = (0, 2, 1, 0) \)
What is a resultant polytope?

- Given \(n + 1 \) point sets \(A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n \)
- \(A = \bigcup_{i=0}^{n} (A_i \times \{ e_i \}) \subset \mathbb{Z}^{2n} \) where \(e_i = (0, \ldots, 1, \ldots, 0) \subset \mathbb{Z}^n \)
- Given \(T \) a triangulation of \(\text{conv}(A) \), a cell is \(a \)-mixed if it contains 2 vertices from \(A_j \), \(j \neq i \), and one vertex \(a \in A_i \).
- \(\rho_T(a) = \sum_{\substack{a-\text{mixed} \\sigma \in T: a \in \sigma \\forall \sigma \in T}} \text{vol}(\sigma) \in \mathbb{N}, \quad a \in A \)
- Resultant polytope \(N(R) = \text{conv}(\rho_T : T \text{ triang. of } \text{conv}(A)) \)
The support of a polynomial is the set of exponents of its monomials with non-zero coefficient.

The resultant R is the polynomial in the coefficients of a system of polynomials which is zero iff the system has a common solution.

The resultant polytope $N(R)$, is the convex hull of the support of R.

\[
\begin{align*}
A_0 & \quad \bullet - - - \bullet & f_0(x) &= ax^2 + b \\
A_1 & \quad \bullet - - \bullet & f_1(x) &= cx^2 + dx + e \\
N(R) & & R(a, b, c, d, e) &= ad^2b + c^2b^2 - 2caeb + a^2e^2
\end{align*}
\]
Connection with Algebra

- The support of a polynomial is the set of exponents of its monomials with non-zero coefficient.
- The resultant R is the polynomial in the coefficients of a system of polynomials which is zero iff the system has a common solution.
- The resultant polytope $N(R)$, is the convex hull of the support of R.

A_0

A_1

A_2

$N(R)$

\[
\begin{align*}
A_0 & \quad f_0(x, y) = ax + by + c \\
A_1 & \quad f_1(x, y) = dx + ey + f \\
A_2 & \quad f_2(x, y) = gx + hy + i
\end{align*}
\]

$R(a, b, c, d, e, f, g, h, i) = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$

4-dimensional Birkhoff polytope
Connection with Algebra

- The support of a polynomial is the set of exponents of its monomials with non-zero coefficient.
- The resultant R is the polynomial in the coefficients of a system of polynomials which is zero iff the system has a common solution.
- The resultant polytope $N(R)$, is the convex hull of the support of R.

\[f_0(x, y) = axy^2 + x^4y + c \]
\[f_1(x, y) = dx + ey \]
\[f_2(x, y) = gx^2 + hy + i \]

NP-hard to compute the resultant in the general case
The idea of the algorithm

Input: $\mathcal{A} \in \mathbb{Z}^{2n}$ defined by $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$

Simplistic method:

- compute the secondary polytope $\Sigma(\mathcal{A})$
- many-to-one relation between vertices of $\Sigma(\mathcal{A})$ and $N(R)$ vertices

Cannot enumerate 1 representative per class by walking on secondary edges
The idea of the algorithm

Input: \(\mathcal{A} \subseteq \mathbb{Z}^{2n} \) defined by \(A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n \)

New Algorithm:

- **Vertex oracle**: given a direction vector compute a vertex of \(N(R) \)
- **Output sensitive**: computes only one triangulation of \(\mathcal{A} \) per \(N(R) \) vertex + one per \(N(R) \) facet
- **Computes projections** of \(N(R) \) or \(\Sigma(\mathcal{A}) \)
Regular triangulations of $A \subset \mathbb{R}^d$ are obtained by projecting the lower (or upper) hull of A lifted to \mathbb{R}^{d+1} via a generic lifting function $w \in (\mathbb{R}^{|A|})^\times$.

If w is not generic then we construct a regular subdivision.
The Vertex (Optimization) Oracle

Input: $\mathcal{A} \subset \mathbb{Z}^{2n}$, direction $w \in (\mathbb{R}^{\lvert \mathcal{A} \rvert})^\times$

Output: vertex $\in \mathcal{N}(R)$, extremal wrt w

1. use w as a lifting to construct regular subdivision S of \mathcal{A}
The Vertex (Optimization) Oracle

Input: $\mathcal{A} \subset \mathbb{Z}^{2n}$, direction $w \in (\mathbb{R}^{\left|\mathcal{A}\right|})^\times$

Output: vertex $\in N(R)$, extremal wrt w

1. use w as a lifting to construct regular subdivision S of \mathcal{A}
2. refine S into triangulation T of \mathcal{A}

face of $\Sigma(\mathcal{A})$
The Vertex (Optimization) Oracle

Input: \(\mathcal{A} \subset \mathbb{Z}^{2n} \), direction \(w \in (\mathbb{R}^{\lvert \mathcal{A} \rvert})^\times \)

Output: vertex \(\in N(R) \), extremal wrt \(w \)

1. use \(w \) as a lifting to construct regular subdivision \(S \) of \(\mathcal{A} \)
2. refine \(S \) into triangulation \(T \) of \(\mathcal{A} \)
3. return \(\rho_T \in N^{\lvert \mathcal{A} \rvert} \)
The Vertex (Optimization) Oracle

Input: \(\mathcal{A} \subset \mathbb{Z}^{2n} \), direction \(w \in (\mathbb{R}^{\left| \mathcal{A} \right|})^\times \)

Output: vertex \(\in \mathcal{N}(R) \), extremal wrt \(w \)

1. use \(w \) as a lifting to construct regular subdivision \(S \) of \(\mathcal{A} \)
2. refine \(S \) into triangulation \(T \) of \(\mathcal{A} \)
3. return \(\rho_T \in \mathbb{N}^{\left| \mathcal{A} \right|} \)

Lemma

Oracle’s output is

- always a vertex of the target polytope,
- extremal wrt \(w \).
Incremental Algorithm

Input: \mathcal{A}

1. initialization step

initialization:
- $Q \subset N(R)$
- $\dim(Q) = \dim(N(R))$
Incremental Algorithm

Input: \mathcal{A}

1. initialization step
2. all hyperplanes of Q_H are illegal

2 kinds of hyperplanes of Q_H:
- legal if it supports facet $\subset N(R)$
- illegal otherwise
Incremental Algorithm

Input: \(\mathcal{A} \)
Output: H-rep. \(Q_H \), V-rep. \(Q_V \) of \(Q = N(R) \)

1. initialization step
2. all hyperplanes of \(Q_H \) are illegal
3. while \(\exists \) illegal hyperplane \(H \subset Q_H \) with outer normal \(w \) do
 ▶ call oracle for \(w \) and compute \(v \), \(Q_V \leftarrow Q_V \cup \{v\} \)

Extending an illegal facet
Incremental Algorithm

Input: \mathcal{A}

Output: H-rep. Q_H, V-rep. Q_V of $Q = N(R)$

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal
Incremental Algorithm

Input: \mathcal{A}

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal

Validating a legal facet
Incremental Algorithm

Input: \mathcal{A}

Output: H-rep. Q_H, V-rep. Q_V of $Q = N(R)$

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal

Validating a legal facet
Incremental Algorithm

Input: \mathcal{A}

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal
Incremental Algorithm

Input: \(\mathcal{A} \)
Output: H-rep. \(Q_H \), V-rep. \(Q_V \) of \(Q = N(R) \)

1. initialization step
2. all hyperplanes of \(Q_H \) are illegal
3. while \(\exists \) illegal hyperplane \(H \subset Q_H \) with outer normal \(w \) do
 - call oracle for \(w \) and compute \(v \), \(Q_V \leftarrow Q_V \cup \{v\} \)
 - if \(v \notin Q_V \cap H \) then \(Q_H \leftarrow \text{CH}(Q_V \cup \{v\}) \) else \(H \) is legal

At any step, \(Q \) is an inner approximation . . .
Incremental Algorithm

Input: A

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal

At any step, Q is an inner approximation . . . from which we can compute an outer approximation Q_o.
Incremental Algorithm

Input: A

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal
Incremental Algorithm

Input: \mathcal{A}

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal
Incremental Algorithm

Input: \(\mathcal{A} \)
Output: H-rep. \(Q_H \), V-rep. \(Q_V \) of \(Q = N(R) \)

1. initialization step
2. all hyperplanes of \(Q_H \) are illegal
3. while \(\exists \) illegal hyperplane \(H \subset Q_H \) with outer normal \(w \) do
 ▶ call oracle for \(w \) and compute \(v \), \(Q_V \leftarrow Q_V \cup \{v\} \)
 ▶ if \(v \notin Q_V \cap H \) then \(Q_H \leftarrow \text{CH}(Q_V \cup \{v\}) \) else \(H \) is legal
Incremental Algorithm

Input: \mathcal{A}

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal
Incremental Algorithm

Input: \(\mathcal{A} \)
Output: H-rep. \(Q_H \), V-rep. \(Q_V \) of \(Q = N(R) \)

1. initialization step
2. all hyperplanes of \(Q_H \) are illegal
3. while \(\exists \) illegal hyperplane \(H \subset Q_H \) with outer normal \(w \) do
 a. call oracle for \(w \) and compute \(v \), \(Q_V \leftarrow Q_V \cup \{v\} \)
 b. if \(v \notin Q_V \cap H \) then \(Q_H \leftarrow \text{CH}(Q_V \cup \{v\}) \) else \(H \) is legal
Incremental Algorithm

Input: \(\mathcal{A} \)

Output: H-rep. \(Q_H \), V-rep. \(Q_V \) of \(Q = N(R) \)

1. initialization step
2. all hyperplanes of \(Q_H \) are illegal
3. while \(\exists \) illegal hyperplane \(H \subset Q_H \) with outer normal \(w \) do
 - call oracle for \(w \) and compute \(v \), \(Q_V \leftarrow Q_V \cup \{v\} \)
 - if \(v \notin Q_V \cap H \) then \(Q_H \leftarrow \text{CH}(Q_V \cup \{v\}) \) else \(H \) is legal
Incremental Algorithm

Input: \(\mathcal{A} \)
Output: H-rep. \(Q_H \), V-rep. \(Q_V \) of \(Q = N(R) \)

1. initialization step
2. all hyperplanes of \(Q_H \) are illegal
3. while \(\exists \) illegal hyperplane \(H \subset Q_H \) with outer normal \(w \) do
 ▶ call oracle for \(w \) and compute \(v \), \(Q_V \leftarrow Q_V \cup \{v\} \)
 ▶ if \(v \notin Q_V \cap H \) then \(Q_H \leftarrow \text{CH}(Q_V \cup \{v\}) \) else \(H \) is legal
Incremental Algorithm

Input: \(\mathcal{A} \)

Output: H-rep. \(Q_H \), V-rep. \(Q_V \) of \(Q = N(R) \)

1. initialization step

2. all hyperplanes of \(Q_H \) are illegal

3. while \(\exists \) illegal hyperplane \(H \subset Q_H \) with outer normal \(w \) do

 ▶ call oracle for \(w \) and compute \(v \), \(Q_V \leftarrow Q_V \cup \{v\} \)

 ▶ if \(v \notin Q_V \cap H \) then \(Q_H \leftarrow \text{CH}(Q_V \cup \{v\}) \) else \(H \) is legal
Incremental Algorithm

Input: \mathcal{A}

1. initialization step

2. all hyperplanes of Q_H are illegal

3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal
Incremental Algorithm

Input: \(A \)
Output: H-rep. \(Q_H \), V-rep. \(Q_V \) of \(Q = N(R) \)

1. initialization step
2. all hyperplanes of \(Q_H \) are illegal
3. while \(\exists \) illegal hyperplane \(H \subset Q_H \) with outer normal \(w \) do
 ▶ call oracle for \(w \) and compute \(v \), \(Q_V \leftarrow Q_V \cup \{v\} \)
 ▶ if \(v \notin Q_V \cap H \) then \(Q_H \leftarrow \text{CH}(Q_V \cup \{v\}) \) else \(H \) is legal
Incremental Algorithm

Input: \mathcal{A}

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal
Incremental Algorithm

Input: \(A \)
Output: H-rep. \(Q_H \), V-rep. \(Q_V \) of \(Q = N(R) \)

1. initialization step
2. all hyperplanes of \(Q_H \) are illegal
3. while \(\exists \) illegal hyperplane \(H \subset Q_H \) with outer normal \(w \) do
 ▶ call oracle for \(w \) and compute \(v \), \(Q_V \leftarrow Q_V \cup \{v\} \)
 ▶ if \(v \notin Q_V \cap H \) then \(Q_H \leftarrow \text{CH}(Q_V \cup \{v\}) \) else \(H \) is legal
Incremental Algorithm

Input: A

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow CH(Q_V \cup \{v\})$ else H is legal
Incremental Algorithm

Input: \mathcal{A}

1. initialization step

2. all hyperplanes of Q_H are illegal

3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal
Complexity

Theorem
We compute the Vertex- and Halfspace-representations of $N(R)$, as well as a triangulation T of $N(R)$, in

$$O^*(m^5 |\text{vtx}(N(R))| \cdot |T|^2),$$

where $m = \dim N(R)$, and $|T|$ the number of full-dim faces of T.

Elements of proof

- Computation is done in dimension $m = |A| - 2n + 1$, $N(R) \subset \mathbb{R}^{|A|}$.
- At most $\leq \text{vtx}(N(R)) + \text{fct}(N(R))$ oracle calls (Lem. 9).
- Beneath-and-Beyond algorithm for converting V-rep. to H-rep [Joswig '02].
ResPol package

- C++
- towards high-dimensional triangulation [Boissonnat, Devillers, Hornus]
- extreme_points_d [Gärtner] (preprocessing step)
- Hashing of determinantal predicates: optimizing sequences of similar determinants
- http://sourceforge.net/projects/respol
Output-sensitivity

- oracle calls $\leq \text{vtx}(N(R)) + \text{fct}(N(R))$
- output vertices bound polynomially the output triangulation size
- subexponential runtime wrt to input points (L), output vertices (R)
Hashing and Gfan

- **hashing determinants** speeds ≤ 10-100x when $\dim(N(R)) = 3, 4$
- faster than Gfan [Yu-Jensen'11] for $\dim N(R) \leq 6$, else competitive

$\dim(N(R)) = 4$:

![Graph showing the comparison between different methods]
Computing the convex hull of $N(R)$

- triangulation, polymake beneath-beyond (bb), cdd, lrs

\[\text{dim}(N(R)) = 4 \]
f-vectors of 4-dimensional $N(R)$

$(6, 15, 18, 9)$ $(18, 54, 54, 18)$
$(8, 20, 21, 9)$ $(19, 54, 52, 17)$
$(9, 22, 21, 8)$ $(19, 55, 51, 15)$

$(19, 55, 52, 16)$
$(19, 55, 54, 18)$
$(19, 56, 54, 17)$

$(19, 56, 56, 19)$
$(19, 57, 57, 19)$

$(20, 58, 54, 16)$
$(20, 59, 57, 18)$
$(20, 60, 60, 20)$

$(21, 62, 60, 19)$
$(21, 63, 63, 21)$
$(22, 66, 66, 22)$

Open

Almost symmetric f-vector?
Ongoing and future work

- Extension of hashing determinants to CH computations
 (with L. Peñaranda) (to appear in ESA’12)
- Combinatorial characterization of 4-dimensional resultant polytopes
 (with I.Z. Emiris, A. Dickenstein)
- Computation of discriminant polytopes
 (with I.Z. Emiris, A. Dickenstein)
- Membership oracles from vertex (optimization) oracles
 (with B. Gärtner)

References

- The paper: “An output-sensitive algorithm for computing projections of resultant polytopes.” in SoCG’12
- The code: http://respol.sourceforge.net
The end...

(figure courtesy of M.Joswig)

Facet and vertex graph of the largest 4-dimensional resultant polytope

Thank You!