Constructing Polytopes via a Vertex Oracle

Vissarion Fisikopoulos

Joint work with I.Z. Emiris, C. Konaxis (now U. Crete) and L. Peñaranda (now IMPA, Rio)

Department of Informatics, University of Athens

Mittagsseminar, ETH, Zurich, 12.Jul.2012

Main actor: resultant polytope

- Geometry: Minkowski summands of secondary polytopes, equival. classes of secondary vertices, generalize Birkhoff polytopes
- Motivation: useful to express the solvability of polynomial systems
- Applications: discriminant and resultant computation, implicitization of parametric hypersurfaces

Enneper's Minimal Surface

Existing work

- Theory of resultants, secondary polytopes, Cayley trick [GKZ '94]
- ▶ TOPCOM [Rambau '02] computes all vertices of secondary polytope.
- [Michiels & Verschelde DCG'99] coarse equivalence classes of secondary polytope vertices.
- ► [Michiels & Cools DCG'00] decomposition of $\Sigma(A)$ in Minkoski summands, including N(R).
- Tropical geometry [Sturmfels-Yu '08]: algorithms for resultant polytope (GFan library) [Jensen-Yu '11] and discriminant polytope (TropLi software) [Rincn '12].

• Given n+1 point sets $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$

• Given
$$n+1$$
 point sets $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$

•
$$\mathcal{A} = \bigcup_{i=0}^{n} (A_i \times \{e_i\}) \subset \mathbb{Z}^{2n}$$
 where $e_i = (0, \dots, 1, \dots, 0) \subset \mathbb{Z}^n$

- Given n+1 point sets $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$
- $\mathcal{A} = \bigcup_{i=0}^{n} (A_i \times \{e_i\}) \subset \mathbb{Z}^{2n}$ where $e_i = (0, \dots, 1, \dots, 0) \subset \mathbb{Z}^n$
- ▶ Given T a triangulation of conv(A), a cell is *a*-mixed if it contains 2 vertices from A_i , $j \neq i$, and one vertex $a \in A_i$.

• Given n+1 point sets $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$

▶
$$\mathcal{A} = \bigcup_{i=0}^{n} (A_i \times \{e_i\}) \subset \mathbb{Z}^{2n}$$
 where $e_i = (0, \dots, 1, \dots, 0) \subset \mathbb{Z}^n$

Given T a triangulation of conv(A), a cell is a-mixed if it contains 2 vertices from A_j, j ≠ i, and one vertex a ∈ A_i.

$$\blacktriangleright \ \rho_{\mathcal{T}}(a) = \sum_{\substack{a = \text{mixed} \\ \sigma \in \mathcal{T}: a \in \sigma}} \operatorname{vol}(\sigma) \in \mathbb{N}, \quad a \in \mathcal{A}$$

• Given
$$n+1$$
 point sets $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$

▶
$$\mathcal{A} = \bigcup_{i=0}^{n} (A_i \times \{e_i\}) \subset \mathbb{Z}^{2n}$$
 where $e_i = (0, ..., 1, ..., 0) \subset \mathbb{Z}^n$

▶ Given T a triangulation of conv(A), a cell is *a*-mixed if it contains 2 vertices from A_i , $j \neq i$, and one vertex $a \in A_i$.

$$\blacktriangleright \ \rho_{\mathcal{T}}(a) = \sum_{\substack{a = \text{mixed} \\ \sigma \in \mathcal{T}: a \in \sigma}} \operatorname{vol}(\sigma) \ \in \mathbb{N}, \quad a \in \mathcal{A}$$

• Resultant polytope $N(R) = conv(\rho_T : T \text{ triang. of } conv(A))$

Connection with Algebra

- The support of a polynomial is the the set of exponents of its monomials with non-zero coefficient.
- ► The resultant *R* is the polynomial in the coefficients of a system of polynomials which is zero iff the system has a common solution.
- The resultant polytope N(R), is the convex hull of the support of R.

Connection with Algebra

- The support of a polynomial is the the set of exponents of its monomials with non-zero coefficient.
- ▶ The resultant *R* is the polynomial in the coefficients of a system of polynomials which is zero iff the system has a common solution.
- The resultant polytope N(R), is the convex hull of the support of R.

4-dimensional Birkhoff polytope

Connection with Algebra

- The support of a polynomial is the the set of exponents of its monomials with non-zero coefficient.
- ▶ The resultant *R* is the polynomial in the coefficients of a system of polynomials which is zero iff the system has a common solution.
- The resultant polytope N(R), is the convex hull of the support of R.

$$f_0(x, y) = axy^2 + x^4y + c$$

$$f_1(x, y) = dx + ey$$

$$f_2(x, y) = gx^2 + hy + i$$

NP-hard to compute the resultant in the general case

The idea of the algorithm

Input: $\mathcal{A} \in \mathbb{Z}^{2n}$ defined by $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$ Simplistic method:

- compute the secondary polytope $\Sigma(\mathcal{A})$
- ► many-to-one relation between vertices of $\Sigma(A)$ and N(R) vertices Cannot enumerate 1 representative per class by walking on secondary edges

The idea of the algorithm

Input: $\mathcal{A} \in \mathbb{Z}^{2n}$ defined by $A_0, A_1, \dots, A_n \subset \mathbb{Z}^n$ New Algorithm:

- Vertex oracle: given a direction vector compute a vertex of N(R)
- Output sensitive: computes only one triangulation of A per N(R) vertex + one per N(R) facet
- Computes projections of N(R) or $\Sigma(A)$

A basic tool for the oracle:

Regular triangulations of $A \subset \mathbb{R}^d$ are obtained by projecting the lower (or upper) hull of A lifted to \mathbb{R}^{d+1} via a generic lifting function $w \in (\mathbb{R}^{|\mathcal{A}|})^{\times}$.

If w is not generic then we construct a regular subdivision.

Input: $\mathcal{A} \subset \mathbb{Z}^{2n}$, direction $w \in (\mathbb{R}^{|\mathcal{A}|})^{\times}$ Output: vertex $\in N(R)$, extremal wrt w

1. use w as a lifting to construct regular subdivision S of \mathcal{A}

Input: $\mathcal{A} \subset \mathbb{Z}^{2n}$, direction $w \in (\mathbb{R}^{|\mathcal{A}|})^{\times}$ Output: vertex $\in N(R)$, extremal wrt w

- 1. use w as a lifting to construct regular subdivision S of \mathcal{A}
- 2. refine S into triangulation T of A

Input: $\mathcal{A} \subset \mathbb{Z}^{2n}$, direction $w \in (\mathbb{R}^{|\mathcal{A}|})^{\times}$ Output: vertex $\in N(R)$, extremal wrt w

- 1. use w as a lifting to construct regular subdivision S of \mathcal{A}
- 2. refine S into triangulation T of A
- 3. return $\rho_T \in \mathbb{N}^{|\mathcal{A}|}$

Input: $\mathcal{A} \subset \mathbb{Z}^{2n}$, direction $w \in (\mathbb{R}^{|\mathcal{A}|})^{\times}$ Output: vertex $\in N(R)$, extremal wrt w

- 1. use w as a lifting to construct regular subdivision S of ${\mathcal A}$
- 2. refine S into triangulation T of A
- 3. return $\rho_T \in \mathbb{N}^{|\mathcal{A}|}$

Lemma Oracle's output is

- always a vertex of the target polytope,
- extremal wrt w.

Input: AOutput: H-rep. Q_H , V-rep. Q_V of Q = N(R)

1. initialization step

initialization:

- $Q \subset N(R)$
- $\dim(Q) = \dim(N(R))$

Input: AOutput: H-rep. Q_H , V-rep. Q_V of Q = N(R)

- $1. \ initialization \ step$
- 2. all hyperplanes of Q_H are illegal

2 kinds of hyperplanes of Q_H :

- legal if it supports facet $\subset N(R)$
- illegal otherwise

Input: ${\cal A}$

Output: H-rep. Q_H , V-rep. Q_V of Q = N(R)

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for *w* and compute *v*, $Q_V \leftarrow Q_V \cup \{v\}$

Extending an illegal facet

Input: \mathcal{A} Output: H-rep. Q_H , V-rep. Q_V of Q = N(R)

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for *w* and compute *v*, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Extending an illegal facet

Input: \mathcal{A} Output: H-rep. Q_H , V-rep. Q_V of Q = N(R)

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for *w* and compute *v*, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Validating a legal facet

Input: \mathcal{A} Output: H-rep. Q_H , V-rep. Q_V of Q = N(R)

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for *w* and compute *v*, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Validating a legal facet

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - call oracle for *w* and compute *v*, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Input: \mathcal{A} Output: H-rep. Q_H , V-rep. Q_V of Q = N(R)

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for *w* and compute *v*, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

At any step, Q is an inner approximation . . .

Input: \mathcal{A} Output: H-rep. Q_H , V-rep. Q_V of Q = N(R)

- $1. \ initialization \ step$
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

At any step, Q is an inner approximation ... from which we can compute an outer approximation Q_o .

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - call oracle for *w* and compute *v*, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for *w* and compute *v*, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for *w* and compute *v*, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

- $1. \ initialization \ step$
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for *w* and compute *v*, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

- $1. \ initialization \ step$
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for *w* and compute *v*, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - call oracle for *w* and compute *v*, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - call oracle for *w* and compute *v*, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - call oracle for *w* and compute *v*, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - call oracle for *w* and compute *v*, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - call oracle for *w* and compute *v*, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - ▶ call oracle for *w* and compute *v*, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - call oracle for *w* and compute *v*, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - call oracle for *w* and compute *v*, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

- 1. initialization step
- 2. all hyperplanes of Q_H are illegal
- 3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - call oracle for *w* and compute *v*, $Q_V \leftarrow Q_V \cup \{v\}$
 - ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \mathsf{CH}(Q_V \cup \{v\})$ else H is legal

Complexity

Theorem We compute the Vertex- and Halfspace-representations of N(R), as well as a triangulation T of N(R), in

 $O^*(m^5 |vtx(N(R))| \cdot |T|^2),$

where $m = \dim N(R)$, and |T| the number of full-dim faces of T.

Elements of proof

- Computation is done in dimension $m = |\mathcal{A}| 2n + 1$, $N(R) \subset \mathbb{R}^{|\mathcal{A}|}$.
- At most $\leq vtx(N(R)) + fct(N(R))$ oracle calls (Lem. 9).
- Beneath-and-Beyond algorithm for converting V-rep. to H-rep [Joswig '02].

ResPol package

- ► C++
- ▶ towards high-dimensional
- triangulation [Boissonnat,Devillers,Hornus] extreme_points_d [Gärtner] (preprocessing step)
- Hashing of determinantal predicates: optimizing sequences of similar determinants
- http://sourceforge.net/projects/respol

Output-sensitivity

• oracle calls $\leq vtx(N(R)) + fct(N(R))$

- output vertices bound polynomially the output triangulation size
- subexponential runtime wrt to input points (L), output vertices (R)

Hashing and Gfan

- hashing determinants speeds \leq 10-100x when dim(N(R)) = 3,4
- ▶ faster than Gfan [Yu-Jensen'11] for $dimN(R) \leq 6$, else competitive

Computing the convex hull of N(R)

triangulation, polymake beneath-beyond (bb), cdd, lrs

dim(N(R)) = 4

f-vectors of 4-dimensional N(R)

$(6, 15, 18, 9) (8, 20, 21, 9) (9, 22, 21, 8) (9, 22, 21, 8) (17, 48, 45, 14) (17, 48, 46, 15) (17, 48, 47, 16) (17, 49, 47, 15) (17, 49, 47, 15) (17, 49, 48, 16) (17, 49, 49, 17) (17, 50, 50, 17) (18, 51, 48, 15) (18, 51, 49, 16) (18, 52, 50, 16) (18, 52, 51, 17) \\(18, 52, 51, 17) \\(18, 52, 51, 17) \\(18, 52, 51, 17) \\(18, 52, 51, 17) \\(18, 52, 51, 17) \\(18, 52, 51, 17) \\(18, 52, 51, 17) \\(18, 52, 51, 17) \\(18, 52, 51, 17) \\(18, 52, 51, 17) \\(18, 52, 51, 17) \\(18, 52, 51, 17) \\(18, 52, 51, 17) \\(18, 52, 51, 17) \\(18, 52, 51, 17) \\(18, 51, 48, 15) \\(18, 52, 51, 17) \\(18, 51, 48, 15) \\(18, 52, 51, 17) \\(18, 51, 48, 15) \\(18, 52, 51, 17) \\(18, 51, 48, 15) \\(18, 52, 51, 17) \\(18, 51, 48, 15) \\(18, 52, 51, 17) \\(18, 51, 48, 15) \\(18, 52, 51, 17) \\(18, 51, 48, 15) \\(18, 52, 51, 17) \\(18, 51, 48, 15) \\(18, 52, 51, 17) \\(18, 51, 48, 15) \\(18, 52, 51, 17) \\(18, 51, 48, 15) \\(18, 52, 51, 17) \\(18, 51, 48, 15) \\(18, 52, 51, 17) \\(18, 51, 48, 15) \\(18, 52, 51, 17) \\(18, 51, 48, 15) \\(18, 52, 51, 17) \\(18, 51, 48, 15) \\(18, 52, 51, 17) \\(18, 51, 48, 15) \\(18, 52, 51, 17) \\(18, 51, 48, 15) \\(18, 52, 51, 17) \\(18, 51, 48, 15) \\(18, 52, 51, 17) \\(18, 51, 48, 15) \\(18, 52, 51, 17) \\(18, 51, 48, 15) \\(18, 51, 48, 15) \\(18, 52, 51, 17) \\(18, 51, 48, 15) \\(18, 51, 48, 18, 18) \\(18, 51, 48, 18) \\(18, 51, 48, 18) \\(18, 51, 48, 1$	(18, 54, 54, 18) (19, 54, 52, 17) (19, 55, 51, 15) (19, 55, 52, 16) (19, 55, 54, 18) (19, 56, 54, 17) (19, 56, 56, 19) (19, 57, 57, 19) (20, 58, 54, 16) (20, 59, 57, 18) (20, 60, 60, 20) (21, 62, 60, 19) (21, 63, 63, 21) (22, 66, 66, 22) Open Almost symmetric f-vector?
(18, 52, 51, 17) (18, 53, 51, 16) (18, 53, 53, 18)	Almost symmetric t-vector?

Ongoing and future work

- Extension of hashing determinants to CH computations (with L.Peñaranda) (to appear in ESA'12)
- Combinatorial characterization of 4-dimensional resultant polytopes (with I.Z.Emiris, A.Dickenstein)
- Computation of discriminant polytopes (with I.Z.Emiris, A.Dickenstein)
- Membership oracles from vertex (optimization) oracles (with B.Gärtner)

References

- The paper: "An output-sensitive algorithm for computing projections of resultant polytopes." in SoCG'12
- The code: http://respol.sourceforge.net

The end...

(figure courtesy of M.Joswig)

Facet and vertex graph of the largest 4-dimensional resultant polytope

Thank You !