
Efficient edge skeleton and volume computation
for polytopes defined by oracles

Vissarion Fisikopoulos

Joint work with I.Z. Emiris (UoA), B. Gärtner (ETHZ)

Dept. of Informatics & Telecommunications, University of Athens

McGill, 20.Jun.2013

Main motivation: resultant polytopes

Vertices → equilavent classes of regular

triangulations of a pointset’s convex hull.

I Algorithm: [Emiris F Konaxis Peñaranda ’12]
vertex oracle + incremental construction = output-sensitive

I Software: computation in < 7 dimensions

I Q: Can we compute in dim. > 7 (edge-skeleton, volume) ?

Main motivation: resultant polytopes

Vertices → equilavent classes of regular

triangulations of a pointset’s convex hull.

I Algorithm: [Emiris F Konaxis Peñaranda ’12]
vertex oracle + incremental construction = output-sensitive

I Software: computation in < 7 dimensions

I Q: Can we compute in dim. > 7 (edge-skeleton, volume) ?

Main motivation: resultant polytopes

Vertices → equilavent classes of regular

triangulations of a pointset’s convex hull.

I Algorithm: [Emiris F Konaxis Peñaranda ’12]
vertex oracle + incremental construction = output-sensitive

I Software: computation in < 7 dimensions

I Q: Can we compute in dim. > 7 (edge-skeleton, volume) ?

Main motivation: resultant polytopes

Vertices → equilavent classes of regular

triangulations of a pointset’s convex hull.

I Algorithm: [Emiris F Konaxis Peñaranda ’12]
vertex oracle + incremental construction = output-sensitive

I Software: computation in < 7 dimensions

I Q: Can we compute in dim. > 7 (edge-skeleton, volume) ?

Applications

I Geometric Modeling (Implicitization) [EmirisKalinkaKonaxisLuuBa’12]

I Combinatorics of 4-d resultant polytopes [Dickenstein Emiris F ’13]

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks & Volume approximation

Motivation: Resultant polytopes

Experimental Results

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks & Volume approximation

Motivation: Resultant polytopes

Experimental Results

Polytope representation

Convex polytope P ∈ Rn.

Explicit: Vertex-, Halfspace - representation (VP, HP),
Edge-sketelon (ESP), Triangulation (TP)

Polytope representation

Convex polytope P ∈ Rn.

Explicit: Vertex-, Halfspace - representation (VP, HP),
Edge-sketelon (ESP), Triangulation (TP)

VP → HP: convex hull problem, HP → VP vertex enum. problem

I open: ∃ total poly-time algorithm, i.e. poly(input,output)

Polytope representation

Convex polytope P ∈ Rn.

Explicit: Vertex-, Halfspace - representation (VP, HP),
Edge-sketelon (ESP), Triangulation (TP)

VP → HP: convex hull problem, HP → VP vertex enum. problem

I open: ∃ total poly-time algorithm, i.e. poly(input,output)

Implicit: Oracles (OPTP, SEPP, MEMP)

Polytope representation

Convex polytope P ∈ Rn.

Explicit: Vertex-, Halfspace - representation (VP, HP),
Edge-sketelon (ESP), Triangulation (TP)

VP → HP: convex hull problem, HP → VP vertex enum. problem

I open: ∃ total poly-time algorithm, i.e. poly(input,output)

Implicit: Oracles (OPTP, SEPP, MEMP)

We study algorithms for polytopes given by OPTP:

I Resultant, Discriminant, Secondary polytopes

I Minkowski sums

Well-described polytope and oracles

Definition
A rational polytope P ⊆ Rn is well-described (with a parameter ϕ)
if there exists an H-representation for P in which every inequality
has encoding length at most ϕ. The encoding length of P is
〈P〉 = n+ϕ.

Proposition (Grötschel et al.’93)

For a well-described polytope, we can compute OPTP from SEPP
(and vice versa) in oracle polynomial-time. The runtime
(polynomially) depends on n and ϕ.

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks & Volume approximation

Motivation: Resultant polytopes

Experimental Results

Vertex enumeration with edge-directions

Given OPTP and a superset D of the edge directions D(P) of
P ⊆ Rn, compute the vertices P.

Proposition (Rothblum Onn ’07)

Let P ⊆ Rn given by OPTP, and D ⊇ D(P). All vertices of P can
be computed in

O(|D|n−1) calls to OPTP +O(|D|n−1) arithmetic operations.

I Computes the Mink. sum (zonotope) Z of the unit vectors
supported on D.

I Computes an arbitrary vector v in the normal cone of each
vertex of Z and calls OPTP with v.

Edge skeleton computation with edge-directions

Input:

I OPTP

I Edge vec. P (dir. & len.): D

Output:

I Edge-skeleton of P

P

c

Sketch of Algorithm:

I Compute a vertex of P (x = OPTP(c) for arbitrary cT ∈ Rn)

I Compute segments S = {(x, x+ d), for all d ∈ D}

I Remove from S all segments (x, y) s.t. y /∈ P (OPTP → SEPP)

I Remove from S the segments that are not extreme

I Can be altered to work with edge directions only

Edge skeleton computation with edge-directions

Input:

I OPTP

I Edge vec. P (dir. & len.): D

Output:

I Edge-skeleton of P

P

Sketch of Algorithm:

I Compute a vertex of P (x = OPTP(c) for arbitrary cT ∈ Rn)

I Compute segments S = {(x, x+ d), for all d ∈ D}

I Remove from S all segments (x, y) s.t. y /∈ P (OPTP → SEPP)

I Remove from S the segments that are not extreme

I Can be altered to work with edge directions only

Edge skeleton computation with edge-directions

Input:

I OPTP

I Edge vec. P (dir. & len.): D

Output:

I Edge-skeleton of P

P

Sketch of Algorithm:

I Compute a vertex of P (x = OPTP(c) for arbitrary cT ∈ Rn)

I Compute segments S = {(x, x+ d), for all d ∈ D}

I Remove from S all segments (x, y) s.t. y /∈ P (OPTP → SEPP)

I Remove from S the segments that are not extreme

I Can be altered to work with edge directions only

Edge skeleton computation with edge-directions

Input:

I OPTP

I Edge vec. P (dir. & len.): D

Output:

I Edge-skeleton of P

P

Sketch of Algorithm:

I Compute a vertex of P (x = OPTP(c) for arbitrary cT ∈ Rn)

I Compute segments S = {(x, x+ d), for all d ∈ D}

I Remove from S all segments (x, y) s.t. y /∈ P (OPTP → SEPP)

I Remove from S the segments that are not extreme

I Can be altered to work with edge directions only

Edge skeleton computation with edge-directions

Input:

I OPTP

I Edge vec. P (dir. & len.): D

Output:

I Edge-skeleton of P

P

Sketch of Algorithm:

I Compute a vertex of P (x = OPTP(c) for arbitrary cT ∈ Rn)

I Compute segments S = {(x, x+ d), for all d ∈ D}

I Remove from S all segments (x, y) s.t. y /∈ P (OPTP → SEPP)

I Remove from S the segments that are not extreme

I Can be altered to work with edge directions only

Runtime of the algorithm

Theorem
Given OPTP and a superset of edge directions D of a well-
described polytope P, the edge skeleton of P can be computed in
oracle total polynomial-time

O
(
m
(
|D|O(〈P〉+ 〈D〉) + LP(4n3|D|(〈P〉+ 〈D〉))

))
,

I 〈D〉 is the binary encoding length of the vector set D,

I m the number of vertices of P,

I O(〈P〉) : runtime of oracle conversion algorithm for P,

I LP(〈A〉+ 〈b〉+ 〈c〉) runtime of max cTx over {x : Ax ≤ b}.

Workspace efficient variant by employing reverse search.

Applications

Given polytopes P1, . . . , Pr ⊆ Rn signed Minkowski sum combines
Minkowski sums and differences, namely

P = P1 + s2P2 + · · ·+ srPr, si ∈ {−1, 1},

assuming P is a polytope.

Corollary

Given OPT oracles for well-described P1, . . . , Pr ⊆ Rn, and
supersets of edge directions D1, . . . , Dr, the edge skeleton of P can
be computed in oracle total polynomial-time.

I Similar results for resultant, secondary and discriminant
polytopes.

More applications

Convex combinatorial optimization: given F ⊂ 2N with
N = {1, . . . ,m}, a vectorial weighting w : N→ Qn, and a convex
functional c : Qn → Q, find F ∈ F of maximum value c(w(F)).

I [Rothblum Onn ’04] polynomial algorithm for fixed n.

Convex integer programming: maximize a convex function over the
integer hull of a polyhedron.

I [De Loera et al. ’09] polynomial algorithms for many
interesting cases; all edges are computed via Graver bases.

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks & Volume approximation

Motivation: Resultant polytopes

Experimental Results

Polytope volume computation

Given polytope P ⊂ Rn computing it volume is:

I #-P hard for P in V- or H-representation [Dyer ’88],

I open if both representations are available [Fukuda ’00].

Efficient volume approximation [Dyer et.al’91]

B(1)
B(ρ)

P

Volume approximation of P reduces to
uniform sampling from P

Proposition (Lovász et al.’04)

The volume of P ⊆ Rn, given by MEMP oracle s.t.
B(1) ⊆ P ⊆ B(ρ), can be approximated with relative error ε and
probability 1− δ using

O

(
n4

ε2
log9

n

εδ
+ n4 log8

n

δ
log ρ

)
= O∗(n4)

oracle calls.

Note: O∗(·) hides polylog factors in argument and error parameter

Random points in polytopes with MEMP

P

xB

`

Hit-and-Run walk

I line ` through x, uniform on
Bx(1)

I move x to a uniform
disrtibuted point on P ∩ `

Random points in polytopes with MEMP

P
`

x
Hit-and-Run walk

I line ` through x, uniform on
Bx(1)

I move x to a uniform
disrtibuted point on P ∩ `

Random points in polytopes with MEMP

P

`

x

Hit-and-Run walk

I line ` through x, uniform on
Bx(1)

I move x to a uniform
disrtibuted point on P ∩ `

Random points in polytopes with MEMP

P

Hit-and-Run walk

I line ` through x, uniform on
Bx(1)

I move x to a uniform
disrtibuted point on P ∩ `

x will be “uniformly disrtibuted” in P after O(n3) hit-and-run
steps [Lovász98]

Random points in polytopes with OPTP

P

1. Hit-and-Run walk
with OPT →MEM in every step

Volume of polytopes given by OPTP

Input: OPTP, ρ: B(1) ⊆ P ⊆ B(ρ)
Output: ε-approximation vol(P)

I Call volume algorithm

I Each MEMP oracle calls feasibility/optimization algorithm

Corollary

An approximation of the volume of (signed) Minkowski sums and
resultant, secondary, discriminant polytopes (given by OPT
oracles) can be computed in oracle polynomial time.

Random points in polytopes with OPTP REVISITED

P

`
x

1. Hit-and-Run walk
with OPT →MEM in every step

2. Vertex walk
I for uniform c compute OPTP(c)
I segment `, connect x, OPTP(c)
I move x to a uniform disrtibuted

point on `

Random points in polytopes with OPTP REVISITED

P

`

x

1. Hit-and-Run walk
with OPT →MEM in every step

2. Vertex walk
I for uniform c compute OPTP(c)
I segment `, connect x, OPTP(c)
I move x to a uniform disrtibuted

point on `

Random points in polytopes with OPTP REVISITED

P

`

x

1. Hit-and-Run walk
with OPT →MEM in every step

2. Vertex walk
I for uniform c compute OPTP(c)
I segment `, connect x, OPTP(c)
I move x to a uniform disrtibuted

point on `

Random points in polytopes with OPTP REVISITED

1. Hit-and-Run walk
with OPT →MEM in every step

2. Vertex walk
I for uniform c compute OPTP(c)
I segment `, connect x, OPTP(c)
I move x to a uniform disrtibuted

point on `

Open problem: Generate uniform points in P using OPTP

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks & Volume approximation

Motivation: Resultant polytopes

Experimental Results

What is a resultant polytope?

I Given n+ 1 point sets A0, A1, . . . , An ⊂ Zn

A0

A1

a1

a3

a2

a4

What is a resultant polytope?

I Given n+ 1 point sets A0, A1, . . . , An ⊂ Zn

I A =
⋃n
i=0(Ai × {ei}) ⊂ Z2n where ei = (0, . . . , 1, . . . , 0) ⊂ Zn

A

A0

A1

a1

a3

a3, 1

a1, 0

a2

a4

a4, 1

a2, 0

What is a resultant polytope?

I Given n+ 1 point sets A0, A1, . . . , An ⊂ Zn

I A =
⋃n
i=0(Ai × {ei}) ⊂ Z2n where ei = (0, . . . , 1, . . . , 0) ⊂ Zn

I Given T a triangulation of conv(A), a cell is a-mixed if it
contains n 1-dimensional segments from Aj, j 6= i, and some
vertex a ∈ Ai.

A

A0

A1

a1 a2

a3 a4

a3, 1 a4, 1

a1, 0 a2, 0

What is a resultant polytope?

I Given n+ 1 point sets A0, A1, . . . , An ⊂ Zn

I A =
⋃n
i=0(Ai × {ei}) ⊂ Z2n where ei = (0, . . . , 1, . . . , 0) ⊂ Zn

I Given T a triangulation of conv(A), a cell is a-mixed if it
contains n 1-dimensional segments from Aj, j 6= i, and some
vertex a ∈ Ai.

I ρT (a) =
∑

a−mixed
σ∈T :a∈σ

vol(σ) ∈ N, a ∈ A

ρT = (0, 2, 1, 0)

A

A0

A1

a1 a2

a3 a4

a3, 1 a4, 1

a1, 0 a2, 0

What is a resultant polytope?

I Given n+ 1 point sets A0, A1, . . . , An ⊂ Zn

I A =
⋃n
i=0(Ai × {ei}) ⊂ Z2n where ei = (0, . . . , 1, . . . , 0) ⊂ Zn

I Given T a triangulation of conv(A), a cell is a-mixed if it
contains n 1-dimensional segments from Aj, j 6= i, and some
vertex a ∈ Ai.

I ρT (a) =
∑

a−mixed
σ∈T :a∈σ

vol(σ) ∈ N, a ∈ A
I Resultant polytope N(R) = conv(ρT : T triang. of conv(A))

A N(R)

A0

A1

Connection with Algebra

I The Newton polytope of f, N(f), is the convex hull of the set
of exponents of its monomials with non-zero coefficient.

I The resultant R is the polynomial in the coefficients of a
system of polynomials which vanishes if there exists a
common root in the torus of the given polynomials.

A0

A1

N(R) R(a, b, c, d, e) = ad2b+ c2b2 − 2caeb+ a2e2

f0(x) = ax2 + b

f1(x) = cx2 + dx+ e

Connection with Algebra

I The Newton polytope of f, N(f), is the convex hull of the set
of exponents of its monomials with non-zero coefficient.

I The resultant R is the polynomial in the coefficients of a
system of polynomials which vanishes if there exists a
common root in the torus of the given polynomials.

A0

A1

N(R)

f0(x, y) = ax+ by + c

f1(x, y) = dx+ ey + f

f2(x, y) = gx+ hy + iA2

a b c
d e f
g h i

4-dimensional Birkhoff polytope

R(a, b, c, d, e, f, g, h, i) =

Connection with Algebra

I The Newton polytope of f, N(f), is the convex hull of the set
of exponents of its monomials with non-zero coefficient.

I The resultant R is the polynomial in the coefficients of a
system of polynomials which vanishes if there exists a
common root in the torus of the given polynomials.

A0

A1

N(R)

f0(x, y) = axy2 + x4y + c

f1(x, y) = dx+ ey

f2(x, y) = gx2 + hy + iA2

NP-hard to compute the resultant
in the general case

The idea of the algorithm
Input: A ∈ Z2n defined by A0, A1, . . . , An ⊂ Zn
Simplistic method:

I compute the secondary polytope Σ(A)
I many-to-one relation between vertices of Σ(A) and N(R)

vertices

Cannot enumerate 1 representative per class by walking on
secondary edges

The idea of the algorithm
Input: A ∈ Z2n defined by A0, A1, . . . , An ⊂ Zn
New Algorithm: [EFKP’12]

I Vertex oracle: given a direction vector compute a vertex of
N(R)

I Output sensitive: computes only one triangulation of A per
N(R) vertex + one per N(R) facet

I Computes projections of N(R) or Σ(A)

Runtime and software

Theorem (Emiris F Konaxis Peñaranda ’12)

We compute the Vertex- and Halfspace-representations of N(R),
as well as a triangulation T of N(R), in

O∗(m5 |vtx(N(R))| · |T |2),

where m = dimN(R), and |T | the number of full-dim faces of T .

Respol software

I C++, CGAL (Computational Geometry Algorithms Library)

I http://sourceforge.net/projects/respol

I Alternative algorithm that utilizes tropical geometry (GFan
library) [Jensen Yu ’11]

How 4-d resultant polytopes look like?

(6, 15, 18, 9)
(8, 20, 21, 9)
(9, 22, 21, 8)
.
.
.
(17, 49, 47, 15)
(17, 49, 48, 16)
(17, 49, 49, 17)
(17, 50, 50, 17)
(18, 51, 48, 15)
(18, 51, 49, 16)
(18, 52, 50, 16)
(18, 52, 51, 17)
(18, 53, 51, 16)
(18, 53, 53, 18)

(18, 54, 54, 18)
(19, 54, 52, 17)
(19, 55, 51, 15)
(19, 55, 52, 16)
(19, 55, 54, 18)
(19, 56, 54, 17)
(19, 56, 56, 19)
(19, 57, 57, 19)
(20, 58, 54, 16)
(20, 59, 57, 18)
(20, 60, 60, 20)
(21, 62, 60, 19)
(21, 63, 63, 21)
(22, 66, 66, 22)

Open problem

Almost symmetric f-vector?

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks & Volume approximation

Motivation: Resultant polytopes

Experimental Results

Experiments Volume given Membership oracle

I n-cubes (table), σ=average absolute deviation, µ=average
20 experiments

exact exact # rand. # walk vol vol vol vol approx
n vol sec points steps min max µ σ sec
2 4 0.06 2218 8 3.84 4.12 3.97 0.05 0.23
4 16 0.06 2738 7 14.99 16.25 15.59 0.32 1.77
6 64 0.09 5308 38 60.85 67.17 64.31 1.12 39.66
8 256 2.62 8215 16 242.08 262.95 252.71 5.09 46.83
10 1024 388.25 11370 40 964.58 1068.22 1019.02 30.72 228.58
12 4096 – 14725 82 3820.94 4247.96 4034.39 80.08 863.72

I (the only known) implementation of [Lovász et al.’12] tested
only for cubes up to n = 8

I no hope for exact methods in much higher than 10 dim

Experiments Volume of Minkowski sum

I Mink. sum of n-cube and n-crosspolytope, σ=average
absolute deviation, µ=average over 10 experiments

exact exact # rand. # walk vol vol vol vol approx
n vol sec points steps min max µ σ sec
2 14.00 0.01 216 11 12.60 19.16 15.16 1.34 119.00
3 45.33 0.01 200 7 42.92 57.87 49.13 3.92 462.65
4 139.33 0.03 100 7 100.78 203.64 130.79 21.57 721.42
5 412.26 0.23 100 7 194.17 488.14 304.80 59.66 1707.97

I at every hit-and-run step: OPT →MEM (LasVegas
optimization algorithm of [BertsimasVempala04])

Thank you!

No signal

	Polytope Representation & Oracles
	Edge Skeleton Computation
	Geometric Random Walks & Volume approximation
	Motivation: Resultant polytopes
	Experimental Results

