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Main motivation: resultant polytopes

Vertices → equilavent classes of regular

triangulations of a pointset’s convex hull.

I Algorithm: [Emiris F Konaxis Peñaranda ’12]
vertex oracle + incremental construction = output-sensitive

I Software: computation in < 7 dimensions

I Q: Can we compute in dim. > 7 (edge-skeleton, volume) ?
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Applications

I Geometric Modeling (Implicitization) [EmirisKalinkaKonaxisLuuBa’12]

I Combinatorics of 4-d resultant polytopes [Dickenstein Emiris F ’13]
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Polytope representation

Convex polytope P ∈ Rn.

Explicit: Vertex-, Halfspace - representation (VP, HP),
Edge-sketelon (ESP), Triangulation (TP)

VP → HP: convex hull problem, HP → VP vertex enum. problem

I open: ∃ total poly-time algorithm, i.e. poly(input,output)

Implicit: Oracles (OPTP, SEPP, MEMP)

We study algorithms for polytopes given by OPTP:

I Resultant, Discriminant, Secondary polytopes

I Minkowski sums



Well-described polytope and oracles

Definition
A rational polytope P ⊆ Rn is well-described (with a parameter ϕ)
if there exists an H-representation for P in which every inequality
has encoding length at most ϕ. The encoding length of P is
〈P〉 = n+ϕ.

Proposition (Grötschel et al.’93)

For a well-described polytope, we can compute OPTP from SEPP
(and vice versa) in oracle polynomial-time. The runtime
(polynomially) depends on n and ϕ.
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Vertex enumeration with edge-directions

Given OPTP and a superset D of the edge directions D(P) of
P ⊆ Rn, compute the vertices P.

Proposition (Rothblum Onn ’07)

Let P ⊆ Rn given by OPTP, and D ⊇ D(P). All vertices of P can
be computed in

O(|D|n−1) calls to OPTP +O(|D|n−1) arithmetic operations.

I Computes the Mink. sum (zonotope) Z of the unit vectors
supported on D.

I Computes an arbitrary vector v in the normal cone of each
vertex of Z and calls OPTP with v.



Edge skeleton computation with edge-directions

Input:

I OPTP

I Edge vec. P (dir. & len.): D

Output:

I Edge-skeleton of P

P

c

Sketch of Algorithm:

I Compute a vertex of P (x = OPTP(c) for arbitrary cT ∈ Rn)

I Compute segments S = {(x, x+ d), for all d ∈ D}

I Remove from S all segments (x, y) s.t. y /∈ P (OPTP → SEPP)

I Remove from S the segments that are not extreme

I Can be altered to work with edge directions only
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Runtime of the algorithm

Theorem
Given OPTP and a superset of edge directions D of a well-
described polytope P, the edge skeleton of P can be computed in
oracle total polynomial-time

O
(
m
(
|D|O(〈P〉+ 〈D〉) + LP(4n3|D|(〈P〉+ 〈D〉))

))
,

I 〈D〉 is the binary encoding length of the vector set D,

I m the number of vertices of P,

I O(〈P〉) : runtime of oracle conversion algorithm for P,

I LP(〈A〉+ 〈b〉+ 〈c〉) runtime of max cTx over {x : Ax ≤ b}.

Workspace efficient variant by employing reverse search.



Applications

Given polytopes P1, . . . , Pr ⊆ Rn signed Minkowski sum combines
Minkowski sums and differences, namely

P = P1 + s2P2 + · · ·+ srPr, si ∈ {−1, 1},

assuming P is a polytope.

Corollary

Given OPT oracles for well-described P1, . . . , Pr ⊆ Rn, and
supersets of edge directions D1, . . . , Dr, the edge skeleton of P can
be computed in oracle total polynomial-time.

I Similar results for resultant, secondary and discriminant
polytopes.



More applications

Convex combinatorial optimization: given F ⊂ 2N with
N = {1, . . . ,m}, a vectorial weighting w : N→ Qn, and a convex
functional c : Qn → Q, find F ∈ F of maximum value c(w(F)).

I [Rothblum Onn ’04] polynomial algorithm for fixed n.

Convex integer programming: maximize a convex function over the
integer hull of a polyhedron.

I [De Loera et al. ’09] polynomial algorithms for many
interesting cases; all edges are computed via Graver bases.
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Polytope volume computation

Given polytope P ⊂ Rn computing it volume is:

I #-P hard for P in V- or H-representation [Dyer ’88],

I open if both representations are available [Fukuda ’00].



Efficient volume approximation [Dyer et.al’91]

B(1)
B(ρ)

P

Volume approximation of P reduces to
uniform sampling from P

Proposition (Lovász et al.’04)

The volume of P ⊆ Rn, given by MEMP oracle s.t.
B(1) ⊆ P ⊆ B(ρ), can be approximated with relative error ε and
probability 1− δ using

O

(
n4

ε2
log9

n

εδ
+ n4 log8

n

δ
log ρ

)
= O∗(n4)

oracle calls.

Note: O∗(·) hides polylog factors in argument and error parameter
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Random points in polytopes with MEMP

P

Hit-and-Run walk

I line ` through x, uniform on
Bx(1)

I move x to a uniform
disrtibuted point on P ∩ `

x will be “uniformly disrtibuted” in P after O(n3) hit-and-run
steps [Lovász98]



Random points in polytopes with OPTP

P

1. Hit-and-Run walk
with OPT →MEM in every step



Volume of polytopes given by OPTP

Input: OPTP, ρ: B(1) ⊆ P ⊆ B(ρ)
Output: ε-approximation vol(P)

I Call volume algorithm

I Each MEMP oracle calls feasibility/optimization algorithm

Corollary

An approximation of the volume of (signed) Minkowski sums and
resultant, secondary, discriminant polytopes (given by OPT
oracles) can be computed in oracle polynomial time.
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Random points in polytopes with OPTP REVISITED

1. Hit-and-Run walk
with OPT →MEM in every step

2. Vertex walk
I for uniform c compute OPTP(c)
I segment `, connect x, OPTP(c)
I move x to a uniform disrtibuted

point on `

Open problem: Generate uniform points in P using OPTP
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What is a resultant polytope?

I Given n+ 1 point sets A0, A1, . . . , An ⊂ Zn

I A =
⋃n
i=0(Ai × {ei}) ⊂ Z2n where ei = (0, . . . , 1, . . . , 0) ⊂ Zn

I Given T a triangulation of conv(A), a cell is a-mixed if it
contains n 1-dimensional segments from Aj, j 6= i, and some
vertex a ∈ Ai.

I ρT (a) =
∑

a−mixed
σ∈T :a∈σ

vol(σ) ∈ N, a ∈ A
I Resultant polytope N(R) = conv(ρT : T triang. of conv(A))

A N(R)

A0

A1



Connection with Algebra

I The Newton polytope of f, N(f), is the convex hull of the set
of exponents of its monomials with non-zero coefficient.

I The resultant R is the polynomial in the coefficients of a
system of polynomials which vanishes if there exists a
common root in the torus of the given polynomials.

A0

A1

N(R) R(a, b, c, d, e) = ad2b+ c2b2 − 2caeb+ a2e2

f0(x) = ax2 + b

f1(x) = cx2 + dx+ e



Connection with Algebra

I The Newton polytope of f, N(f), is the convex hull of the set
of exponents of its monomials with non-zero coefficient.

I The resultant R is the polynomial in the coefficients of a
system of polynomials which vanishes if there exists a
common root in the torus of the given polynomials.

A0

A1

N(R)

f0(x, y) = ax+ by + c

f1(x, y) = dx+ ey + f

f2(x, y) = gx+ hy + iA2

a b c
d e f
g h i

4-dimensional Birkhoff polytope

R(a, b, c, d, e, f, g, h, i) =



Connection with Algebra

I The Newton polytope of f, N(f), is the convex hull of the set
of exponents of its monomials with non-zero coefficient.

I The resultant R is the polynomial in the coefficients of a
system of polynomials which vanishes if there exists a
common root in the torus of the given polynomials.

A0

A1

N(R)

f0(x, y) = axy2 + x4y + c

f1(x, y) = dx+ ey

f2(x, y) = gx2 + hy + iA2

NP-hard to compute the resultant
in the general case



The idea of the algorithm
Input: A ∈ Z2n defined by A0, A1, . . . , An ⊂ Zn
Simplistic method:

I compute the secondary polytope Σ(A)
I many-to-one relation between vertices of Σ(A) and N(R)

vertices

Cannot enumerate 1 representative per class by walking on
secondary edges



The idea of the algorithm
Input: A ∈ Z2n defined by A0, A1, . . . , An ⊂ Zn
New Algorithm: [EFKP’12]

I Vertex oracle: given a direction vector compute a vertex of
N(R)

I Output sensitive: computes only one triangulation of A per
N(R) vertex + one per N(R) facet

I Computes projections of N(R) or Σ(A)



Runtime and software

Theorem (Emiris F Konaxis Peñaranda ’12)

We compute the Vertex- and Halfspace-representations of N(R),
as well as a triangulation T of N(R), in

O∗(m5 |vtx(N(R))| · |T |2),

where m = dimN(R), and |T | the number of full-dim faces of T .

Respol software

I C++, CGAL (Computational Geometry Algorithms Library)

I http://sourceforge.net/projects/respol

I Alternative algorithm that utilizes tropical geometry (GFan
library) [Jensen Yu ’11]



How 4-d resultant polytopes look like?

(6, 15, 18, 9)
(8, 20, 21, 9)
(9, 22, 21, 8)
.
.
.
(17, 49, 47, 15)
(17, 49, 48, 16)
(17, 49, 49, 17)
(17, 50, 50, 17)
(18, 51, 48, 15)
(18, 51, 49, 16)
(18, 52, 50, 16)
(18, 52, 51, 17)
(18, 53, 51, 16)
(18, 53, 53, 18)

(18, 54, 54, 18)
(19, 54, 52, 17)
(19, 55, 51, 15)
(19, 55, 52, 16)
(19, 55, 54, 18)
(19, 56, 54, 17)
(19, 56, 56, 19)
(19, 57, 57, 19)
(20, 58, 54, 16)
(20, 59, 57, 18)
(20, 60, 60, 20)
(21, 62, 60, 19)
(21, 63, 63, 21)
(22, 66, 66, 22)

Open problem

Almost symmetric f-vector?
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Experiments Volume given Membership oracle

I n-cubes (table), σ=average absolute deviation, µ=average
20 experiments

exact exact # rand. # walk vol vol vol vol approx
n vol sec points steps min max µ σ sec
2 4 0.06 2218 8 3.84 4.12 3.97 0.05 0.23
4 16 0.06 2738 7 14.99 16.25 15.59 0.32 1.77
6 64 0.09 5308 38 60.85 67.17 64.31 1.12 39.66
8 256 2.62 8215 16 242.08 262.95 252.71 5.09 46.83
10 1024 388.25 11370 40 964.58 1068.22 1019.02 30.72 228.58
12 4096 – 14725 82 3820.94 4247.96 4034.39 80.08 863.72

I (the only known) implementation of [Lovász et al.’12] tested
only for cubes up to n = 8

I no hope for exact methods in much higher than 10 dim



Experiments Volume of Minkowski sum

I Mink. sum of n-cube and n-crosspolytope, σ=average
absolute deviation, µ=average over 10 experiments

exact exact # rand. # walk vol vol vol vol approx
n vol sec points steps min max µ σ sec
2 14.00 0.01 216 11 12.60 19.16 15.16 1.34 119.00
3 45.33 0.01 200 7 42.92 57.87 49.13 3.92 462.65
4 139.33 0.03 100 7 100.78 203.64 130.79 21.57 721.42
5 412.26 0.23 100 7 194.17 488.14 304.80 59.66 1707.97

I at every hit-and-run step: OPT →MEM (LasVegas
optimization algorithm of [BertsimasVempala04] )



Thank you!

No signal
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