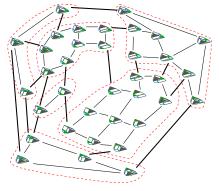
Efficient edge skeleton and volume computation for polytopes defined by oracles

Vissarion Fisikopoulos

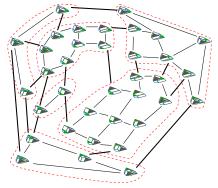
Joint work with I.Z. Emiris (UoA), B. Gärtner (ETHZ)

Dept. of Informatics & Telecommunications, University of Athens

McGill, 20.Jun.2013

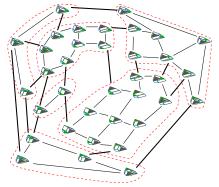


Vertices \rightarrow equilavent classes of regular triangulations of a pointset's convex hull.



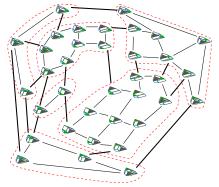
Vertices \rightarrow equilavent classes of regular triangulations of a pointset's convex hull.

 Algorithm: [Emiris F Konaxis Peñaranda '12] vertex oracle + incremental construction = output-sensitive



Vertices \rightarrow equilavent classes of regular triangulations of a pointset's convex hull.

- Algorithm: [Emiris F Konaxis Peñaranda '12] vertex oracle + incremental construction = output-sensitive
- ► Software: computation in < 7 dimensions

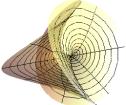


Vertices \rightarrow equilavent classes of regular triangulations of a pointset's convex hull.

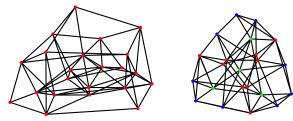
- Algorithm: [Emiris F Konaxis Peñaranda '12] vertex oracle + incremental construction = output-sensitive
- ▶ Software: computation in < 7 dimensions
- Q: Can we compute in dim. >7 (edge-skeleton, volume) ?

Applications

Geometric Modeling (Implicitization) [EmirisKalinkaKonaxisLuuBa'12]



Combinatorics of 4-d resultant polytopes [Dickenstein Emiris F '13]



Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks & Volume approximation

Motivation: Resultant polytopes

Experimental Results

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks & Volume approximation

Motivation: Resultant polytopes

Experimental Results

Convex polytope $P \in \mathbb{R}^n$.

Explicit: Vertex-, Halfspace - representation (V_P, H_P) , Edge-sketelon (ES_P) , Triangulation (T_P)

Convex polytope $P \in \mathbb{R}^n$.

Explicit: Vertex-, Halfspace - representation (V_P, H_P) , Edge-sketelon (ES_P) , Triangulation (T_P)

 $V_P \to H_P \colon$ convex hull problem, $H_P \to V_P$ vertex enum. problem

▶ open: ∃ total poly-time algorithm, i.e. poly(input,output)

Convex polytope $P \in \mathbb{R}^n$.

Explicit: Vertex-, Halfspace - representation (V_P, H_P) , Edge-sketelon (ES_P) , Triangulation (T_P)

 $V_P \to H_P \colon$ convex hull problem, $H_P \to V_P$ vertex enum. problem

▶ open: ∃ total poly-time algorithm, i.e. poly(input,output)

Implicit: Oracles (OPT_P, SEP_P, MEM_P)

Convex polytope $P \in \mathbb{R}^n$.

Explicit: Vertex-, Halfspace - representation (V_P, H_P) , Edge-sketelon (ES_P) , Triangulation (T_P)

 $V_P \to H_P \colon$ convex hull problem, $H_P \to V_P$ vertex enum. problem

▶ open: ∃ total poly-time algorithm, i.e. poly(input,output)

Implicit: Oracles (OPT_P, SEP_P, MEM_P)

We study algorithms for polytopes given by OPT_P:

- Resultant, Discriminant, Secondary polytopes
- Minkowski sums

Well-described polytope and oracles

Definition

A rational polytope $P\subseteq \mathbb{R}^n$ is well-described (with a parameter ϕ) if there exists an H-representation for P in which every inequality has encoding length at most ϕ . The encoding length of P is $\langle P\rangle=n+\phi.$

Proposition (Grötschel et al.'93)

For a well-described polytope, we can compute OPT_P from SEP_P (and vice versa) in oracle polynomial-time. The runtime (polynomially) depends on n and φ .

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks & Volume approximation

Motivation: Resultant polytopes

Experimental Results

Vertex enumeration with edge-directions

Given OPT_P and a superset D of the edge directions D(P) of $P\subseteq \mathbb{R}^n,$ compute the vertices P.

Proposition (Rothblum Onn '07)

Let $P\subseteq \mathbb{R}^n$ given by $OPT_P,$ and $D\supseteq D(P).$ All vertices of P can be computed in

 $O(|D|^{n-1})$ calls to $\mathsf{OPT}_P+O(|D|^{n-1})$ arithmetic operations.

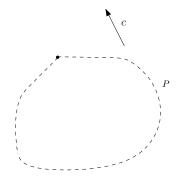
- Computes the Mink. sum (zonotope) Z of the unit vectors supported on D.
- Computes an arbitrary vector v in the normal cone of each vertex of Z and calls OPT_P with v.

Input:

- OPT_P
- Edge vec. P (dir. & len.): D

Output:

Edge-skeleton of P



Sketch of **Algorithm**:

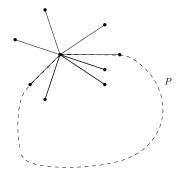
• Compute a vertex of P ($x = OPT_P(c)$ for arbitrary $c^T \in \mathbb{R}^n$)

Input:

- ► OPT_P
- Edge vec. P (dir. & len.): D

Output:

Edge-skeleton of P



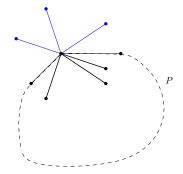
- Compute a vertex of P ($x = OPT_P(c)$ for arbitrary $c^T \in \mathbb{R}^n$)
- Compute segments $S = \{(x, x + d), \text{ for all } d \in D\}$

Input:

- ► OPT_P
- Edge vec. P (dir. & len.): D

Output:

Edge-skeleton of P



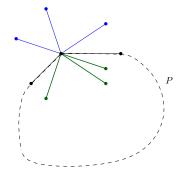
- Compute a vertex of P ($x = OPT_P(c)$ for arbitrary $c^T \in \mathbb{R}^n$)
- Compute segments $S = \{(x, x + d), \text{ for all } d \in D\}$
- ▶ Remove from S all segments (x, y) s.t. $y \notin P$ (OPT_P → SEP_P)

Input:

- ► OPT_P
- Edge vec. P (dir. & len.): D

Output:

Edge-skeleton of P



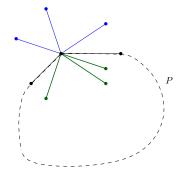
- Compute a vertex of P ($x = OPT_P(c)$ for arbitrary $c^T \in \mathbb{R}^n$)
- Compute segments $S = \{(x, x + d), \text{ for all } d \in D\}$
- ▶ Remove from S all segments (x, y) s.t. $y \notin P$ (OPT_P → SEP_P)
- Remove from S the segments that are not extreme

Input:

- ► OPT_P
- Edge vec. P (dir. & len.): D

Output:

Edge-skeleton of P



- Compute a vertex of P ($x = OPT_P(c)$ for arbitrary $c^T \in \mathbb{R}^n$)
- Compute segments $S = \{(x, x + d), \text{ for all } d \in D\}$
- ▶ Remove from S all segments (x, y) s.t. $y \notin P$ (OPT_P → SEP_P)
- Remove from S the segments that are not extreme
- Can be altered to work with edge directions only

Runtime of the algorithm

Theorem

Given OPT_P and a superset of edge directions D of a welldescribed polytope P, the edge skeleton of P can be computed in oracle total polynomial-time

$$O\left(m\left(|D|\mathbb{O}(\langle P\rangle+\langle D\rangle)+\mathbb{LP}(4n^3|D|(\langle P\rangle+\langle D\rangle))\right)\right),$$

- $\blacktriangleright \langle D \rangle$ is the binary encoding length of the vector set D,
- m the number of vertices of P,
- $\mathbb{O}(\langle P \rangle)$: runtime of oracle conversion algorithm for P,
- $\mathbb{LP}(\langle A \rangle + \langle b \rangle + \langle c \rangle)$ runtime of max $c^T x$ over $\{x : Ax \le b\}$.

Workspace efficient variant by employing reverse search.

Applications

Given polytopes $P_1,\ldots,P_r\subseteq \mathbb{R}^n$ signed Minkowski sum combines Minkowski sums and differences, namely

$$P = P_1 + s_2 P_2 + \dots + s_r P_r, \ s_i \in \{-1, 1\},$$

assuming P is a polytope.

Corollary

Given OPT oracles for well-described $P_1, \ldots, P_r \subseteq \mathbb{R}^n$, and supersets of edge directions D_1, \ldots, D_r , the edge skeleton of P can be computed in oracle total polynomial-time.

 Similar results for resultant, secondary and discriminant polytopes.

More applications

Convex combinatorial optimization: given $\mathcal{F} \subset 2^N$ with $N = \{1, \ldots, m\}$, a vectorial weighting $w : N \to \mathbb{Q}^n$, and a convex functional $c : \mathbb{Q}^n \to \mathbb{Q}$, find $F \in \mathcal{F}$ of maximum value c(w(F)).

▶ [Rothblum Onn '04] polynomial algorithm for fixed n.

Convex integer programming: maximize a convex function over the integer hull of a polyhedron.

[De Loera et al. '09] polynomial algorithms for many interesting cases; all edges are computed via Graver bases.

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks & Volume approximation

Motivation: Resultant polytopes

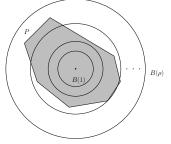
Experimental Results

Polytope volume computation

Given polytope $P \subset \mathbb{R}^n$ computing it volume is:

- ▶ #-P hard for P in V- or H-representation [Dyer '88],
- open if both representations are available [Fukuda '00].

Efficient_volume approximation [Dyer et.al'91]



Volume approximation of P reduces to uniform sampling from P

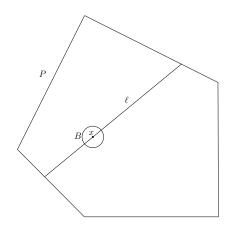
Proposition (Lovász et al.'04)

The volume of $P \subseteq \mathbb{R}^n$, given by MEM_P oracle s.t. $B(1) \subseteq P \subseteq B(\rho)$, can be approximated with relative error ε and probability $1 - \delta$ using

$$O\left(\frac{\mathfrak{n}^4}{\epsilon^2}\log^9\frac{\mathfrak{n}}{\epsilon\delta}+\mathfrak{n}^4\log^8\frac{\mathfrak{n}}{\delta}\log\rho\right)=O^*(\mathfrak{n}^4)$$

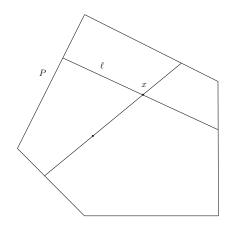
oracle calls.

Note: $O^{\ast}(\cdot)$ hides polylog factors in argument and error parameter



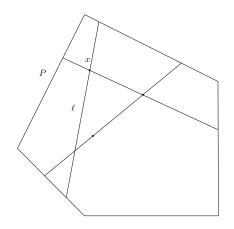
Hit-and-Run walk

- ► line l through x, uniform on $B_x(1)$
- ► move x to a uniform disrtibuted point on P ∩ l



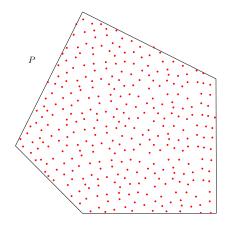
Hit-and-Run walk

- ► line l through x, uniform on $B_x(1)$
- ► move x to a uniform disrtibuted point on P ∩ l



Hit-and-Run walk

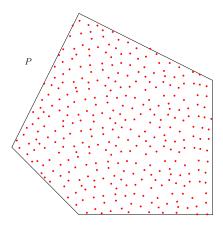
- line ℓ through x, uniform on $B_x(1)$
- ► move x to a uniform disrtibuted point on P ∩ l



Hit-and-Run walk

- ► line ℓ through x, uniform on $B_x(1)$
- move x to a uniform disrtibuted point on $P \cap \ell$

x will be "uniformly disrtibuted" in P after $O(n^3)$ hit-and-run steps [Lovász98]



1. Hit-and-Run walk with OPT \rightarrow MEM in every step

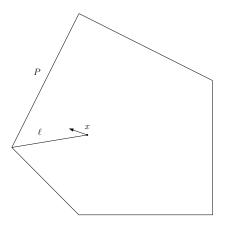
Volume of polytopes given by OPT_P

```
Input: OPT<sub>P</sub>, \rho: B(1) \subseteq P \subseteq B(\rho)
Output: \epsilon-approximation vol(P)
```

- Call volume algorithm
- ► Each MEM_P oracle calls feasibility/optimization algorithm

Corollary

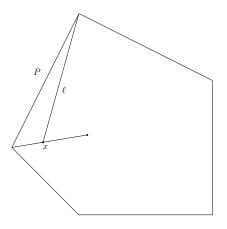
An approximation of the volume of (signed) Minkowski sums and resultant, secondary, discriminant polytopes (given by OPT oracles) can be computed in oracle polynomial time.



1. Hit-and-Run walk with OPT \rightarrow MEM in every step

2. Vertex walk

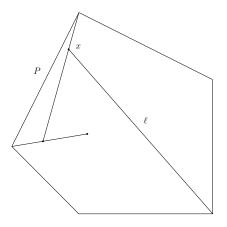
- for uniform c compute $OPT_P(c)$
- ▶ segment ℓ , connect x, $OPT_P(c)$
- ► move x to a uniform disrtibuted point on l



1. Hit-and-Run walk with OPT \rightarrow MEM in every step

2. Vertex walk

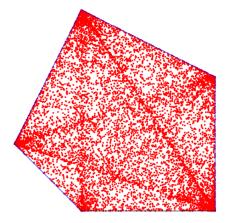
- for uniform c compute $OPT_P(c)$
- ▶ segment ℓ , connect x, $OPT_P(c)$
- ► move x to a uniform disrtibuted point on l



1. Hit-and-Run walk with OPT \rightarrow MEM in every step

2. Vertex walk

- for uniform c compute $OPT_P(c)$
- ▶ segment ℓ , connect x, $OPT_P(c)$
- ► move x to a uniform disrtibuted point on l



- 1. Hit-and-Run walk with OPT \rightarrow MEM in every step 2. Vertex walk
 - for uniform c compute $OPT_P(c)$
 - segment ℓ , connect x, $OPT_P(c)$
 - move x to a uniform disrtibuted point on l

Open problem: Generate uniform points in P using OPTP

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks & Volume approximation

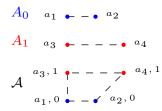
Motivation: Resultant polytopes

Experimental Results

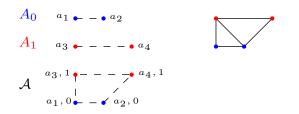
• Given n + 1 point sets $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$

• Given
$$n + 1$$
 point sets $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$

•
$$\mathcal{A} = \bigcup_{i=0}^{n} (A_i \times \{e_i\}) \subset \mathbb{Z}^{2n}$$
 where $e_i = (0, \dots, 1, \dots, 0) \subset \mathbb{Z}^n$



- Given n + 1 point sets $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$
- $\mathcal{A} = \bigcup_{i=0}^{n} (A_i \times \{e_i\}) \subset \mathbb{Z}^{2n}$ where $e_i = (0, \dots, 1, \dots, 0) \subset \mathbb{Z}^n$
- Given T a triangulation of conv(A), a cell is a-mixed if it contains n 1-dimensional segments from A_j, j ≠ i, and some vertex a ∈ A_i.

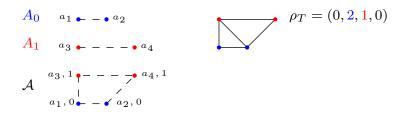


• Given
$$n + 1$$
 point sets $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$

•
$$\mathcal{A} = \bigcup_{i=0}^{n} (A_i \times \{e_i\}) \subset \mathbb{Z}^{2n}$$
 where $e_i = (0, \dots, 1, \dots, 0) \subset \mathbb{Z}^n$

Given T a triangulation of conv(A), a cell is a-mixed if it contains n 1-dimensional segments from A_j, j ≠ i, and some vertex a ∈ A_i.

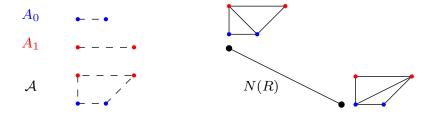
$$\blacktriangleright \ \rho_T(a) = \sum_{\substack{a - \text{mixed} \\ \sigma \in T: a \in \sigma}} \mathsf{vol}(\sigma) \ \in \mathbb{N}, \quad a \in \mathcal{A}$$



- Given n + 1 point sets $A_0, A_1, \ldots, A_n \subset \mathbb{Z}^n$
- $\mathcal{A} = \bigcup_{i=0}^{n} (A_i \times \{e_i\}) \subset \mathbb{Z}^{2n}$ where $e_i = (0, \dots, 1, \dots, 0) \subset \mathbb{Z}^n$
- Given T a triangulation of conv(A), a cell is a-mixed if it contains n 1-dimensional segments from A_j, j ≠ i, and some vertex a ∈ A_i.

$$\blacktriangleright \ \rho_T(a) = \sum_{\substack{a - \text{mixed} \\ \sigma \in T: a \in \sigma}} \mathsf{vol}(\sigma) \ \in \mathbb{N}, \quad a \in \mathcal{A}$$

► Resultant polytope $N(R) = conv(\rho_T : T \text{ triang. of } conv(A))$



Connection with Algebra

- The Newton polytope of f, N(f), is the convex hull of the set of exponents of its monomials with non-zero coefficient.
- The resultant R is the polynomial in the coefficients of a system of polynomials which vanishes if there exists a common root in the torus of the given polynomials.

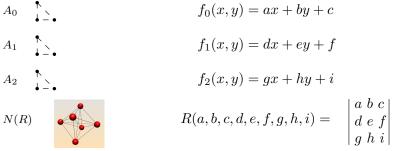
$$A_0 \qquad \bullet \quad -- \quad f_0(x) = ax^2 + b$$

$$A_1 \qquad \bullet \quad -\bullet \quad -\bullet \qquad f_1(x) = cx^2 + dx + e$$

$$R(a,b,c,d,e)=ad^2b+c^2b^2-2caeb+a^2e^2$$

Connection with Algebra

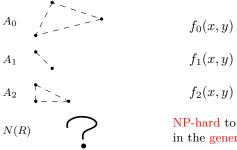
- The Newton polytope of f, N(f), is the convex hull of the set of exponents of its monomials with non-zero coefficient.
- The resultant R is the polynomial in the coefficients of a system of polynomials which vanishes if there exists a common root in the torus of the given polynomials.



4-dimensional Birkhoff polytope

Connection with Algebra

- The Newton polytope of f, N(f), is the convex hull of the set of exponents of its monomials with non-zero coefficient.
- The resultant R is the polynomial in the coefficients of a system of polynomials which vanishes if there exists a common root in the torus of the given polynomials.



$$f_0(x, y) = axy^2 + x^4y + e^{-2y}$$
$$f_1(x, y) = dx + ey$$

$$f_2(x,y) = gx^2 + hy + i$$

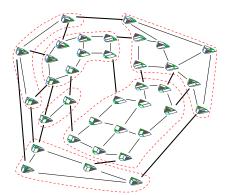
NP-hard to compute the resultant in the general case

The idea of the algorithm

Input: $\mathcal{A} \in \mathbb{Z}^{2n}$ defined by $A_0, A_1, \dots, A_n \subset \mathbb{Z}^n$ Simplistic method:

- compute the secondary polytope $\Sigma(\mathcal{A})$
- \blacktriangleright many-to-one relation between vertices of $\Sigma(\mathcal{A})$ and N(R) vertices

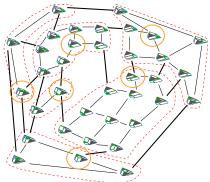
Cannot enumerate 1 representative per class by walking on secondary edges



The idea of the algorithm

Input: $\mathcal{A} \in \mathbb{Z}^{2n}$ defined by $A_0, A_1, \dots, A_n \subset \mathbb{Z}^n$ New Algorithm: [EFKP'12]

- Vertex oracle: given a direction vector compute a vertex of N(R)
- ► Output sensitive: computes only one triangulation of A per N(R) vertex + one per N(R) facet
- Computes projections of N(R) or $\Sigma(\mathcal{A})$



Runtime and software

Theorem (Emiris F Konaxis Peñaranda '12)

We compute the Vertex- and Halfspace-representations of N(R), as well as a triangulation T of N(R), in

 $O^*(\mathfrak{m}^5 | vtx(N(R))| \cdot |T|^2),$

where $\mathfrak{m} = \dim N(R),$ and |T| the number of full-dim faces of T.

Respol software

- C++, CGAL (Computational Geometry Algorithms Library)
- http://sourceforge.net/projects/respol
- Alternative algorithm that utilizes tropical geometry (GFan library) [Jensen Yu '11]

How 4-d resultant polytopes look like?

(6, 15, 18, 9) (8, 20, 21, 9)	(18, 54, 54, 18) (19, 54, 52, 17)
(9, 22, 21, 8)	(19, 55, 51, 15)
	(19, 55, 52, 16)
	(19, 55, 54, 18)
	(19, 56, 54, 17)
(17, 49, 47, 15)	(19, 56, 56, 19)
(17, 49, 48, 16)	(19, 57, 57, 19)
(17, 49, 49, 17)	(20, 58, 54, 16)
(17, 50, 50, 17)	(20, 59, 57, 18)
(18, 51, 48, 15)	(20, 60, 60, 20)
(18, 51, 49, 16)	(21, 62, 60, 19)
(18, 52, 50, 16)	(21, 63, 63, 21)
(18, 52, 51, 17)	(22, 66, 66, 22)
(18, 53, 51, 16) (18, 53, 53, 18)	Open problem
(10, 35, 35, 10)	Almost symmetric f-vector?

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks & Volume approximation

Motivation: Resultant polytopes

Experimental Results

Experiments Volume given Membership oracle

 n-cubes (table), σ=average absolute deviation, μ=average 20 experiments

	exact	exact	# rand.	# walk	vol	vol	vol	vol	approx
n	vol	sec	points	steps	min	max	μ	σ	sec
2	4	0.06	2218	8	3.84	4.12	3.97	0.05	0.23
4	16	0.06	2738	7	14.99	16.25	15.59	0.32	1.77
6	64	0.09	5308	38	60.85	67.17	64.31	1.12	39.66
8	256	2.62	8215	16	242.08	262.95	252.71	5.09	46.83
10	1024	388.25	11370	40	964.58	1068.22	1019.02	30.72	228.58
12	4096	-	14725	82	3820.94	4247.96	4034.39	80.08	863.72

- (the only known) implementation of [Lovász et al.'12] tested only for cubes up to n = 8
- ▶ no hope for exact methods in much higher than 10 dim

Experiments Volume of Minkowski sum

 Mink. sum of n-cube and n-crosspolytope, σ=average absolute deviation, μ=average over 10 experiments

	exact	exact	# rand.	# walk	vol	vol	vol	vol	approx
n	vol	sec	points	steps	min	max	μ	σ	sec
2	14.00	0.01	216	11	12.60	19.16	15.16	1.34	119.00
3	45.33	0.01	200	7	42.92	57.87	49.13	3.92	462.65
4	139.33	0.03	100	7	100.78	203.64	130.79	21.57	721.42
5	412.26	0.23	100	7	194.17	488.14	304.80	59.66	1707.97

► at every hit-and-run step: OPT → MEM (LasVegas optimization algorithm of [BertsimasVempala04])

Thank you!

