Exact and approximate algorithms for resultant polytopes

Vissarion Fisikopoulos

Joint work with I.Z. Emiris and C. Konaxis*

Dept Informatics & Telecoms, University of Athens
* currently with University of Crete

Polynomials and Newton polytopes

- The **support** of a polynomial f is the set of exponents of its monomials with non-zero coefficient.
- The **Newton polytope** of f is the convex hull of its support.

\[
f(x, y) = 8y + xy - 24y^2 - 16x^2 + 220x^2y - 34xy^2 - 84x^3y + 6x^2y^2 - 8xy^3 + 8x^3y^2 + 8x^3 + 18y^3
\]
We study polynomials that expresses the solvability of polynomial systems.

Given a system of \(n + 1 \) linear polynomials \(f_0, f_1, \ldots, f_n \), on \(n \) variables the determinant is a polynomial on the coefficients which is zero iff the system has a common solution.
Given a system of \(n + 1 \) linear polynomials \(f_0, f_1, \ldots, f_n \), on \(n \) variables the determinant is a polynomial on the coefficients which is zero iff the system has a common solution.

\[
\begin{align*}
f_0 &= ax + by + c = 0 \\
f_1 &= dx + ey + f = 0 \\
f_2 &= gx + hy + i = 0 \\
\end{align*}
\[
\begin{vmatrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{vmatrix}
\]
Given a system of $n + 1$ linear polynomials f_0, f_1, \ldots, f_n, on n variables the determinant is a polynomial on the coefficients which is zero iff the system has a common solution.

\[
\begin{align*}
f_0 &= 4x + y + 2 = 0 \\
f_1 &= x + 2y + 1 = 0 \\
f_2 &= x + y + 8 = 0 \\
\end{align*}
\]

\[
\begin{bmatrix}
4 & 1 & 2 \\
1 & 2 & 1 \\
1 & 1 & 8 \\
\end{bmatrix}
= 51
\]
Given a system of $n + 1$ linear polynomials f_0, f_1, \ldots, f_n, on n variables the determinant is a polynomial on the coefficients which is zero iff the system has a common solution.

$$f_0 = ax + by + c = 0$$
$$f_1 = dx + ey + f = 0$$
$$f_2 = gx + hy + i = 0$$

Newton polytope of determinant (Birkhoff polytope)
Polynomial systems

Given a system of $n + 1$ linear general polynomials f_0, f_1, \ldots, f_n, on n variables the determinant resultant is a polynomial on the coefficients which is zero iff the system has a common solution.

\begin{align*}
f_0 &= 4xy^2 + x^4y + 2 = 0 \\
f_1 &= x + 2y = 0 \\
f_2 &= 3x^2 + y + 8 = 0
\end{align*}
Polynomial systems

Given a system of $n + 1$ linear general polynomials f_0, f_1, \ldots, f_n, on n variables the determinant resultant is a polynomial on the coefficients which is zero iff the system has a common solution.

\[f_0 = 4xy^2 + x^4y + 2 = 0 \]
\[f_1 = x + 2y = 0 \]
\[f_2 = 3x^2 + y + 8 = 0 \]

hard to compute
the resultant
Polynomial systems

Given a system of $n + 1$ linear general polynomials f_0, f_1, \ldots, f_n, on n variables the determinant resultant is a polynomial on the coefficients which is zero iff the system has a common solution.

\[
\begin{align*}
 f_0 &= 4xy^2 + x^4y + 2 = 0 \\
 f_1 &= x + 2y = 0 \\
 f_2 &= 3x^2 + y + 8 = 0
\end{align*}
\]

Newton polytope of determinant resultant (Birkhoff resultant polytope II)

hard to compute the resultant
Given a system of $n + 1$ linear general polynomials f_0, f_1, \ldots, f_n, on n variables the determinant resultant is a polynomial on the coefficients which is zero iff the system has a common solution.

supports

Newton polytope of determinant resultant
(Birkhoff resultant polytope II)
The idea of the algorithm

The input supports define a pointset $\mathcal{A} \in \mathbb{Z}^{2n}$

Naive method: compute the secondary polytope $\Sigma(\mathcal{A})$ to compute Π
The idea of the algorithm

The input supports define a pointset $\mathcal{A} \in \mathbb{Z}^{2n}$

Naive method: compute the secondary polytope $\Sigma(\mathcal{A})$ to compute Π

Idea: incrementally construct Π using an **oracle** that given a direction produces vertices of Π
Incremental Algorithm

Input: \mathcal{A}
Output: H-rep. Q_H, V-rep. Q_V of $Q = \Pi$

1. initialization step

initialization:
- $Q \subset \Pi$
- $\text{dim}(Q) = \text{dim}(\Pi)$
Incremental Algorithm

Input: \(\mathcal{A} \)

Output: H-rep. \(Q_H \), V-rep. \(Q_V \) of \(Q = \Pi \)

1. initialization step
2. all hyperplanes of \(Q_H \) are **illegal**

2 kinds of hyperplanes of \(Q_H \):
- **legal** if it supports facet \(\subset \Pi \)
- **illegal** otherwise
Incremental Algorithm

Input: A
Output: H-rep. Q_H, V-rep. Q_V of $Q = \Pi$

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$

Extending an illegal facet
Incremental Algorithm

Input: A
Output: H-rep. Q_H, V-rep. Q_V of $Q = \Pi$

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal

Extending an illegal facet
Incremental Algorithm

Input: \(\mathcal{A} \)
Output: H-rep. \(Q_H \), V-rep. \(Q_V \) of \(Q = \Pi \)

1. initialization step
2. all hyperplanes of \(Q_H \) are illegal
3. while \(\exists \) illegal hyperplane \(H \subset Q_H \) with outer normal \(w \) do
 - call oracle for \(w \) and compute \(v \), \(Q_V \leftarrow Q_V \cup \{v\} \)
 - if \(v \notin Q_V \cap H \) then \(Q_H \leftarrow \text{CH}(Q_V \cup \{v\}) \) else \(H \) is legal

Validating a legal facet
Incremental Algorithm

Input: \mathcal{A}
Output: H-rep. Q_H, V-rep. Q_V of $Q = \Pi$

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 ▶ call oracle for w and compute ν, $Q_V \leftarrow Q_V \cup \{\nu\}$
 ▶ if $\nu \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{\nu\})$ else H is legal

Validating a legal facet
Incremental Algorithm

Input: \mathcal{A}
Output: H-rep. Q_H, V-rep. Q_V of $Q = \Pi$

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal
Incremental Algorithm

Input: \(A \)
Output: H-rep. \(Q_H \), V-rep. \(Q_V \) of \(Q = \Pi \)

1. initialization step
2. all hyperplanes of \(Q_H \) are illegal
3. while \(\exists \) illegal hyperplane \(H \subset Q_H \) with outer normal \(w \) do
 - call oracle for \(w \) and compute \(v \), \(Q_V \leftarrow Q_V \cup \{v\} \)
 - if \(v \notin Q_V \cap H \) then \(Q_H \leftarrow \text{CH}(Q_V \cup \{v\}) \) else \(H \) is legal

At any step, \(Q \) is an inner approximation . . .
Incremental Algorithm

Input: \(\mathcal{A} \)
Output: H-rep. \(Q_H \), V-rep. \(Q_V \) of \(Q = \Pi \)

1. initialization step
2. all hyperplanes of \(Q_H \) are illegal
3. while \(\exists \) illegal hyperplane \(H \subset Q_H \) with outer normal \(w \) do
 - call oracle for \(w \) and compute \(v \), \(Q_V \leftarrow Q_V \cup \{v\} \)
 - if \(v \notin Q_V \cap H \) then \(Q_H \leftarrow \text{CH}(Q_V \cup \{v\}) \) else \(H \) is legal

At any step, \(Q \) is an inner approximation . . . from which we can compute an outer approximation \(Q_o \).
Incremental Algorithm

Input: A
Output: H-rep. Q_H, V-rep. Q_V of $Q = \Pi$

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal
Incremental Algorithm

Input: \mathcal{A}
Output: H-rep. Q_H, V-rep. Q_V of $Q = \Pi$

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal
Incremental Algorithm

Input: \mathcal{A}
Output: H-rep. Q_H, V-rep. Q_V of $Q = \Pi$

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal
Incremental Algorithm

Input: \mathcal{A}
Output: H-rep. Q_H, V-rep. Q_V of $Q = \Pi$

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal
Incremental Algorithm

Input: \mathcal{A}
Output: H-rep. Q_H, V-rep. Q_V of $Q = \Pi$

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal
Incremental Algorithm

Input: \mathcal{A}
Output: H-rep. Q_H, V-rep. Q_V of $Q = \Pi$

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal
Incremental Algorithm

Input: \mathcal{A}
Output: H-rep. Q_H, V-rep. Q_V of $Q = \Pi$

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal
Incremental Algorithm

Input: A
Output: H-rep. Q_H, V-rep. Q_V of $Q = \Pi$

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal
Incremental Algorithm

Input: \(A \)

Output: H-rep. \(Q_H \), V-rep. \(Q_V \) of \(Q = \Pi \)

1. initialization step
2. all hyperplanes of \(Q_H \) are illegal
3. while \(\exists \) illegal hyperplane \(H \subset Q_H \) with outer normal \(w \) do
 - call oracle for \(w \) and compute \(v \), \(Q_V \leftarrow Q_V \cup \{v\} \)
 - if \(v \notin Q_V \cap H \) then \(Q_H \leftarrow \text{CH}(Q_V \cup \{v\}) \) else \(H \) is legal
Incremental Algorithm

Input: A
Output: H-rep. Q_H, V-rep. Q_V of $Q = \Pi$

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal
Incremental Algorithm

Input: \mathcal{A}
Output: H-rep. Q_H, V-rep. Q_V of $Q = \Pi$

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal

\[
Q \quad \Pi
\]
Incremental Algorithm

Input: \mathcal{A}
Output: H-rep. Q_H, V-rep. Q_V of $Q = \Pi$

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 ▶ call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 ▶ if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal
Incremental Algorithm

Input: \(\mathcal{A} \)
Output: \(\text{H-rep. } Q_H, \text{ V-rep. } Q_V \text{ of } Q = II \)

1. initialization step
2. all hyperplanes of \(Q_H \) are illegal
3. while \(\exists \) illegal hyperplane \(H \subset Q_H \) with outer normal \(w \) do
 ▶ call oracle for \(w \) and compute \(v \), \(Q_V \leftarrow Q_V \cup \{v\} \)
 ▶ if \(v \notin Q_V \cap H \) then \(Q_H \leftarrow \text{CH}(Q_V \cup \{v\}) \) else \(H \) is legal
Incremental Algorithm

Input: \mathcal{A}
Output: H-rep. Q_H, V-rep. Q_V of $Q = \Pi$

1. initialization step
2. all hyperplanes of Q_H are illegal
3. while \exists illegal hyperplane $H \subset Q_H$ with outer normal w do
 - call oracle for w and compute v, $Q_V \leftarrow Q_V \cup \{v\}$
 - if $v \notin Q_V \cap H$ then $Q_H \leftarrow \text{CH}(Q_V \cup \{v\})$ else H is legal
Complexity

Theorem
We compute the Vertex- and Halfspace-representations of \(\Pi \), as well as a triangulation \(T \) of \(\Pi \), in

\[O^*(m^5 |\text{vtx}(\Pi)| \cdot |T|^2), \]

where \(m = \text{dim} \, \Pi \), and \(|T|\) the number of full-dim faces of \(T \).

Elements of proof
- Most computation is done in dimension \(\leq m \).
- At most \(\leq \text{vtx}(\Pi) + \text{fct}(\Pi) \) oracle calls
- Beneath-Beyond algorithm for converting V-rep. to H-rep. (bottleneck)
ResPol Implementation

Tools
C++, CGAL, triangulation [Boissonnat, Devillers, Hornus], extreme_points_d [Gärtner]

Experiments \((\text{dim}(\Pi) = 4)\)

![Graph showing time vs. number of points for different tools]

- Respol-hash
- Respol-no hash
- Gfan-TTR
- Gfan-NFSI
Future work

- approximate resultant polytopes \((\dim(\mathcal{I}) \geq 7)\)
- preliminary results:

| input | \(m\) | \(|\mathcal{A}|\) | 3 | 3 | 4 | 4 | 5 | 5 |
|-------|-------|-------------|-------|-------|-------|-------|-------|-------|
| | | | 200 | 490 | 20 | 30 | 17 | 20 |
| exact | | \#vtx(\(\mathcal{I}\)) | 98 | 133 | 416 | 1296 | 1674 | 5093 |
| | | time | 2.03 | 5.87 | 3.72 | 25.97 | 51.54 | 239.96|
| approx. | | \#vtx(\(Q_{in}\)) | 15 | 11 | 63 | 121 | | |
| | | vol(\(Q_{in}\))/vol(\(\mathcal{I}\)) | 0.96 | 0.95 | 0.93 | 0.94 | | |
| | | vol(\(Q_{out}\))/vol(\(\mathcal{I}\)) | 1.02 | 1.03 | 1.04 | 1.03 | | |
| | | time | 0.15 | 0.22 | 0.37 | 1.42 | \(>10\text{hr}\) | \(>10\text{hr}\) |

- approximate volume computation [Lovász-Vempala06]
References

The code

The full version of the paper
References

The code
▶ http://respol.sourceforge.net

The full version of the paper
▶ http://arxiv.org/abs/1108.5985v2

Thank You!
Convex hull implementations

- From V- to H-rep. of Π.
- triangulation (on/off-line), polymake beneath-beyond, cdd, lrs

\[\dim(\Pi) = 4 \]