Efficient edge-skeleton computation for polytopes defined by oracles

Vissarion Fisikopoulos

Joint work with I.Z. Emiris (UoA), B. Gärtner (ETHZ)

Dept. of Informatics & Telecommunications, University of Athens

ACAC, 22.Aug.2013
Outline

Polytopes & Oracles

Algorithms for polytopes given by oracles
Outline

Polytopes & Oracles

Algorithms for polytopes given by oracles
A convex polytope $P \subseteq \mathbb{R}^d$ can be represented as the
1. convex hull of a pointset $\{p_1, \ldots, p_n\}$ (V-representation)
2. intersection of halfspaces $\{h_1, \ldots, h_m\}$ (H-representation)

These problems are equivalent by polytope duality.
Algorithmic Issues

- For general dimension d there is no polynomial algorithm for the convex hull (or vertex enumeration) problem since m can be $O\left(n^{\lfloor d/2 \rfloor}\right)$ [McMullen’70].

- It is open whether there exist a total poly-time algorithm for the convex hull (or vertex enumeration) problem, i.e. runs in poly-time in n, m, d.
Polytope Oracles

Implicit representation for a polytope $P \subseteq \mathbb{R}^d$.

OPT$_P$: Given direction $c \in \mathbb{R}^d$ return the vertex $v \in P$ that maximizes $c^T v$.

SEP$_P$: Given point $y \in \mathbb{R}^d$, return yes if $y \in P$ otherwise a hyperplane h that separates y from P.
Well-described polytopes and oracles

Definition
A rational polytope $P \subseteq \mathbb{R}^d$ is well-described (with a parameter φ) if there exists an H-representation for P in which every inequality has encoding length at most φ. The encoding length of P is $\langle P \rangle = d + \varphi$.

Proposition (Grötschel et al.’93)
For a well-described polytope, we can compute OPT_P from SEP_P (and vice versa) in oracle polynomial-time. The runtime (polynomially) depends on d and φ.
Why oracles?

- Polynomial time algorithms for combinatorial optimization problems using the ellipsoid method [Grötschel-Lovász-Schrijver’93]

- Randomized polynomial-time algorithm for approximating the volume of convex bodies [Dyer-Frieze-Kannan ’90]
Our Motivation

Resultant, Discriminant, Secondary polytopes

- Vertices \rightarrow triangulations of a pointset’s convex hull
- OPT_P is available via a triangulation computation
 [[Emiris-F-Konaxis-Peñaranda '12]]

Applications in Computational Algebraic Geometry, Geometric Modelling, Combinatorics
Outline

Polytopes & Oracles

Algorithms for polytopes given by oracles
Main problems

Vertex enumeration in the oracle model
Given OPT_P for $P \subseteq \mathbb{R}^d$, compute the vertices of P.

Vertex enumeration (in the oracle model) with edge-directions
Given OPT_P and a superset D of the edge directions $D(P)$ of $P \subseteq \mathbb{R}^d$, compute the vertices of P.

Remark
Edge-skeleton = V-representation + edges
Thus, edge-skeleton computation subsumes vertex enumeration.
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda '12]

- first compute $d + 1$ aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - either validate this halfspace
 - or add a new vertex to the convex hull
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda ’12]

- first compute $d + 1$ aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 → either validate this halfspace
 → or add a new vertex to the convex hull
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda '12]

- first compute \(d + 1 \) aff. independent vertices of \(P \) and compute their convex hull
- at each step call \(\text{OPT}_P \) with the outer normal vector of a halfspace and
 - either validate this halfspace
 - or add a new vertex to the convex hull
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda '12]

- first compute $d + 1$ aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - either validate this halfspace
 - or add a new vertex to the convex hull
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda '12]

- first compute $d + 1$ aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - either validate this halfspace
 - or add a new vertex to the convex hull
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda '12]

- first compute $d + 1$ aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - either validate this halfspace
 - or add a new vertex to the convex hull
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda '12]

- first compute $d + 1$ aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - either validate this halfspace
 - or add a new vertex to the convex hull
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda '12]

- first compute $d + 1$ aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 → either validate this halfspace
 → or add a new vertex to the convex hull
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda '12]

- first compute $d + 1$ aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - either validate this halfspace
 - or add a new vertex to the convex hull
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda ’12]

- first compute $d + 1$ aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 → either validate this halfspace
 → or add a new vertex to the convex hull
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Péñaranda '12]

- first compute $d + 1$ aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - either validate this halfspace
 - or add a new vertex to the convex hull
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda '12]

- first compute $d + 1$ aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - either validate this halfspace
 - or add a new vertex to the convex hull

![Diagram showing vertex enumeration process]
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda '12]

- first compute $d + 1$ aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 → either validate this halfspace
 → or add a new vertex to the convex hull
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda '12]

- first compute $d + 1$ affine independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 → either validate this halfspace
 → or add a new vertex to the convex hull
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda ’12]

- first compute \(d + 1 \) aff. independent vertices of \(P \) and compute their convex hull
- at each step call \(\text{OPT}_P \) with the outer normal vector of a halfspace and
 → either validate this halfspace
 → or add a new vertex to the convex hull
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda '12]

- first compute $d+1$ aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 → either validate this halfspace
 → or add a new vertex to the convex hull
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda '12]

- first compute $d + 1$ aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - either validate this halfspace
 - or add a new vertex to the convex hull
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda '12]

- first compute $d + 1$ aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 → either validate this halfspace
 → or add a new vertex to the convex hull
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda '12]

- first compute $d + 1$ aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - either validate this halfspace
 - or add a new vertex to the convex hull
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda '12]

- first compute $d + 1$ aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - either validate this halfspace
 - or add a new vertex to the convex hull
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peña\-\-\-aranda '12]

- first compute $d + 1$ aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - either validate this halfspace
 - or add a new vertex to the convex hull
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda '12]

- first compute $d + 1$ aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - either validate this halfspace
 - or add a new vertex to the convex hull
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda '12]

- first compute \(d + 1\) aff. independent vertices of \(P\) and compute their convex hull
- at each step call \(\text{OPT}_P\) with the outer normal vector of a halfspace and
 - either validate this halfspace
 - or add a new vertex to the convex hull

Complexity

Given \(P \subseteq \mathbb{R}^d\), H-, V-repr. & triang. \(T\) of \(P\) can be computed in

\[O(d^5ns^2)\] arithmetic operations \(+ O(n + m)\) calls to \(\text{OPT}_P\).

\(s\) is the number of cells of \(T\).
Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda '12]

- first compute $d + 1$ aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - either validate this halfspace
 - or add a new vertex to the convex hull

Complexity

Given $P \subseteq \mathbb{R}^d$, H-, V-repr. & triang. T of P can be computed in

$$O(d^5ns^2)$$ arithmetic operations $+ O(n + m)$ calls to OPT_P

s is the number of cells of T.

BUT: s can be $O(n^{\lfloor d/2 \rfloor})$
Vertex enumeration with edge-directions

Given OPT_P and a superset D of the edge directions $D(P)$ of $P \subseteq \mathbb{R}^d$, compute the vertices P.

Proposition (Rothblum-Onn '07)

Let $P \subseteq \mathbb{R}^d$ given by OPT_P, and $D \supseteq D(P)$. All vertices of P can be computed in

$$O(|D|^{d-1}) \text{ calls to } \text{OPT}_P + O(|D|^{d-1}) \text{ arithmetic operations.}$$
The edge-skeleton algorithm

Input:
- \(\text{OPT}_P \)
- Edge vec. \(P \) (dir. & len.): \(D \)

Output:
- Edge-skeleton of \(P \)

Sketch of **Algorithm**:
- Compute a vertex of \(P \) \((x = \text{OPT}_P(c) \text{ for arbitrary } c^T \in \mathbb{R}^d) \)
The edge-skeleton algorithm

Input:
- \(\text{OPT}_P \)
- Edge vec. \(P \) (dir. & len.): \(D \)

Output:
- Edge-skeleton of \(P \)

Sketch of Algorithm:
- Compute a vertex of \(P \) \((x = \text{OPT}_P(c) \) for arbitrary \(c^T \in \mathbb{R}^d \) \)
- Compute segments \(S = \{(x, x + d), \text{ for all } d \in D \} \)
The edge-skeleton algorithm

Input:
- \(\text{OPT}_P \)
- Edge vec. \(P \) (dir. & len.): \(D \)

Output:
- Edge-skeleton of \(P \)

Sketch of Algorithm:
- Compute a vertex of \(P \) (\(x = \text{OPT}_P(c) \) for arbitrary \(c^T \in \mathbb{R}^d \))
- Compute segments \(S = \{(x, x + d), \text{ for all } d \in D \} \)
- Remove from \(S \) all segments \((x, y) \) s.t. \(y \notin P \) (\(\text{OPT}_P \rightarrow \text{SEP}_P \))
The edge-skeleton algorithm

Input:
- OPT_P
- Edge vec. P (dir. & len.): D

Output:
- Edge-skeleton of P

Sketch of **Algorithm**:
- Compute a vertex of P ($x = \text{OPT}_P(c)$ for arbitrary $c^T \in \mathbb{R}^d$)
- Compute segments $S = \{(x, x + d), \text{ for all } d \in D\}$
- Remove from S all segments (x, y) s.t. $y \notin P$ ($\text{OPT}_P \rightarrow \text{SEP}_P$)
- Remove from S the segments that are not extreme
The edge-skeleton algorithm

Input:

- OPT_P
- Edge vec. P (dir. & len.): D

Output:

- Edge-skeleton of P

Sketch of Algorithm:

- Compute a vertex of P (x = OPT_P(c) for arbitrary c^T ∈ \mathbb{R}^d)
- Compute segments S = \{(x, x + d), for all d ∈ D\}
- Remove from S all segments (x, y) s.t. y ∉ P (OPT_P → SEP_P)
- Remove from S the segments that are not extreme
- Can be altered to work with edge directions only
Runtime of the edge-skeleton algorithm

Theorem

Given OPT_P and a superset of edge directions D of a well-described polytope P, the edge skeleton of P can be computed in oracle total polynomial-time

$$O\left(n \left(|D| \cdot O(\langle P \rangle) + \langle D \rangle) + LP(4d^3|D|(\langle P \rangle + \langle D \rangle))\right),$$

- $\langle D \rangle$ is the binary encoding length of the vector set D,
- n the number of vertices of P,
- $O(\langle P \rangle)$: runtime of oracle conversion algorithm for P,
- $LP(\langle A \rangle + \langle b \rangle + \langle c \rangle)$ runtime of max $c^T x$ over $\{x : Ax \leq b\}$.
Applications

Corollary

The edge skeleton of resultant, secondary and discriminant polytopes (under some genericity assumption) can be computed in oracle total polynomial-time.

Convex combinatorial optimization: generalization of linear combinatorial optimization. [Rothblum-Onn ’04]

Convex integer programming: maximize a convex function over the integer hull of a polyhedron. [De Loera et al. ’09]
Conclusions

- New & simple algorithm for vertex enumeration of a polytope given by an oracle and known edge directions
- Remove the exponential dependence on the dimension
- First total polynomial time algorithms for resultant, discriminant polytopes (under some genericity assumption)

Future work

- Remove the assumption on the knowledge of edge directions
- Volume computation for polytopes given by optimization oracles
Thank you!