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Classical Polytope Representations

A convex polytope P ⊆ Rd can be represented as the

1. convex hull of a pointset {p1, . . . , pn} (V-representation)

2. intersection of halfspaces {h1, . . . , hm} (H-representation)

convex hull problem

vertex enumeration problem

I These problems are equivalent by polytope duality.



Algorithmic Issues

I For general dimension d there is no polynomial algorithm for
the convex hull (or vertex enumeration) problem since m can
be O

(
nbd/2c) [McMullen’70].

I It is open whether there exist a total poly-time algorithm for
the convex hull (or vertex enumeration) problem, i.e. runs in
poly-time in n,m, d.



Polytope Oracles

Implicit representation for a polytope P ⊆ Rd.

OPTP: Given direction c ∈ Rd return the vertex v ∈ P that maximizes
cTv.

SEPP: Given point y ∈ Rd, return yes if y ∈ P otherwise a
hyperplane h that separates y from P.

c

v

P P
h

y



Well-described polytopes and oracles

Definition
A rational polytope P ⊆ Rd is well-described (with a parameter ϕ)
if there exists an H-representation for P in which every inequality
has encoding length at most ϕ. The encoding length of P is
〈P〉 = d+ϕ.

Proposition (Grötschel et al.’93)

For a well-described polytope, we can compute OPTP from SEPP

(and vice versa) in oracle polynomial-time. The runtime
(polynomially) depends on d and ϕ.



Why oracles?

I Polynomial time algorithms for combinatorial optimization
problems using the ellipsoid method
[Grötschel-Lovász-Schrijver’93]

I Randomized polynomial-time algorithm for approximating the
volume of convex bodies [Dyer-Frieze-Kannan ’90]



Our Motivation

Resultant, Discriminant, Secondary polytopes

I Vertices → triangulations of a
pointset’s convex hull

I OPTP is available via a
triangulation computation
[Emiris-F-Konaxis-Peñaranda ’12]

I Applications in Computational Algebraic Geometry, Geometric
Modelling, Combinatorics
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Main problems

Vertex enumeration in the oracle model
Given OPTP for P ⊆ Rd, compute the vertices of P.

Vertex enumeration (in the oracle model) with edge-directions

Given OPTP and a superset D of the edge directions D(P) of
P ⊆ Rd, compute the vertices of P.

Remark
Edge-skeleton = V-representation + edges
Thus, edge-skeleton computation subsumes vertex enumeration.



Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda ’12]

I first compute d+ 1 aff. independent vertices of P and
compute their convex hull

I at each step call OPTP with the outer normal vector of a
halfspace and→ either validate this halfspace→ or add a new vertex to the convex hull
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I first compute d+ 1 aff. independent vertices of P and
compute their convex hull

I at each step call OPTP with the outer normal vector of a
halfspace and→ either validate this halfspace→ or add a new vertex to the convex hull

N(R)

Q

Q

N(R)

N(R)

Q
w

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

N(R)

Q

BUT: s can be O
(
nbd/2c)



Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda ’12]
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Complexity

Given P ⊆ Rd, H-, V-repr. & triang. T of P can be computed in

O(d5ns2) arithmetic operations +O(n+m) calls to OPTP

s is the number of cells of T .
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(
nbd/2c)



Vertex enumeration in the oracle model

Algorithm sketch [Emiris-F-Konaxis-Peñaranda ’12]
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Given P ⊆ Rd, H-, V-repr. & triang. T of P can be computed in

O(d5ns2) arithmetic operations +O(n+m) calls to OPTP

s is the number of cells of T .

BUT: s can be O
(
nbd/2c)



Vertex enumeration with edge-directions

Given OPTP and a superset D of the edge directions D(P) of
P ⊆ Rd, compute the vertices P.

Proposition (Rothblum-Onn ’07)

Let P ⊆ Rd given by OPTP, and D ⊇ D(P). All vertices of P can
be computed in

O(|D|d−1) calls to OPTP +O(|D|d−1) arithmetic operations.



The edge-skeleton algorithm

Input:

I OPTP

I Edge vec. P (dir. & len.): D

Output:

I Edge-skeleton of P

P

c

Sketch of Algorithm:

I Compute a vertex of P (x = OPTP(c) for arbitrary cT ∈ Rd)

I Compute segments S = {(x, x+ d), for all d ∈ D}

I Remove from S all segments (x, y) s.t. y /∈ P (OPTP → SEPP)

I Remove from S the segments that are not extreme

I Can be altered to work with edge directions only
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Runtime of the edge-skeleton algorithm

Theorem
Given OPTP and a superset of edge directions D of a well-
described polytope P, the edge skeleton of P can be computed in
oracle total polynomial-time

O
(
n
(
|D|O(〈P〉+ 〈D〉) + LP(4d3|D|(〈P〉+ 〈D〉))

))
,

I 〈D〉 is the binary encoding length of the vector set D,

I n the number of vertices of P,

I O(〈P〉) : runtime of oracle conversion algorithm for P,

I LP(〈A〉+ 〈b〉+ 〈c〉) runtime of max cTx over {x : Ax ≤ b}.



Applications

Corollary

The edge skeleton of resultant, secondary and discriminant
polytopes (under some genericity assumption) can be computed in
oracle total polynomial-time.

Convex combinatorial optimization: generalization of linear
combinatorial optimization. [Rothblum-Onn ’04]

Convex integer programming: maximize a convex function over the
integer hull of a polyhedron. [De Loera et al. ’09]



Conclusions

I New & simple algorithm for vertex enumeration of a polytope
given by an oracle and known edge directions

I Remove the exponential dependence on the dimension

I First total polynomial time algorithms for resultant,
discriminant polytopes (under some genericity assumption)

Future work

I Remove the assumption on the knowledge of edge directions

I Volume computation for polytopes given by optimization
oracles



Thank you!
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