Efficient edge-skeleton computation for polytopes defined by oracles

Vissarion Fisikopoulos

Joint work with I.Z. Emiris (UoA), B. Gärtner (ETHZ)

Dept. of Informatics & Telecommunications, University of Athens

ACAC, 22.Aug.2013

Polytopes & Oracles

Algorithms for polytopes given by oracles

Outline

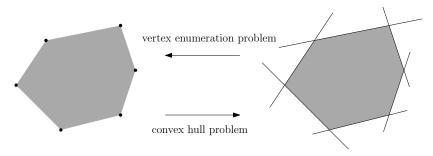
Polytopes & Oracles

Algorithms for polytopes given by oracles

Classical Polytope Representations

A convex polytope $P\subseteq \mathbb{R}^d$ can be represented as the

- 1. convex hull of a pointset $\{p_1, \ldots, p_n\}$ (V-representation)
- 2. intersection of halfspaces $\{h_1, \ldots, h_m\}$ (H-representation)



These problems are equivalent by polytope duality.

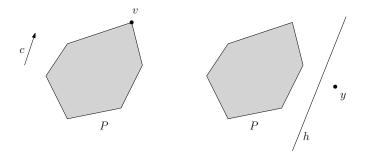
Algorithmic Issues

For general dimension d there is no polynomial algorithm for the convex hull (or vertex enumeration) problem since m can be O (n^{⌊d/2⌋}) [McMullen'70].

It is open whether there exist a total poly-time algorithm for the convex hull (or vertex enumeration) problem, *i.e. runs in poly-time in* n, m, d.

Polytope Oracles

Implicit representation for a polytope $P \subseteq \mathbb{R}^d$.



Well-described polytopes and oracles

Definition

A rational polytope $P\subseteq \mathbb{R}^d$ is well-described (with a parameter ϕ) if there exists an H-representation for P in which every inequality has encoding length at most ϕ . The encoding length of P is $\langle P\rangle=d+\phi.$

Proposition (Grötschel et al.'93)

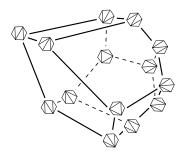
For a well-described polytope, we can compute OPT_P from SEP_P (and vice versa) in oracle polynomial-time. The runtime (polynomially) depends on d and φ .

Why oracles?

- Polynomial time algorithms for combinatorial optimization problems using the ellipsoid method [Grötschel-Lovász-Schrijver'93]
- Randomized polynomial-time algorithm for approximating the volume of convex bodies [Dyer-Frieze-Kannan '90]

Our Motivation

Resultant, Discriminant, Secondary polytopes



- ► Vertices → triangulations of a pointset's convex hull
- OPT_P is available via a triangulation computation [Emiris-F-Konaxis-Peñaranda '12]

 Applications in Computational Algebraic Geometry, Geometric Modelling, Combinatorics

Outline

Polytopes & Oracles

Algorithms for polytopes given by oracles

Main problems

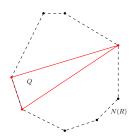
Vertex enumeration in the oracle model Given OPT_P for $P \subseteq \mathbb{R}^d$, compute the vertices of P.

Vertex enumeration (in the oracle model) with edge-directions Given OPT_P and a superset D of the edge directions D(P) of $P \subseteq \mathbb{R}^d$, compute the vertices of P.

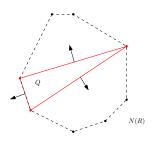
Remark

$$\label{eq:edge-skeleton} \begin{split} \mathsf{Edge-skeleton} &= \mathsf{V}\text{-}\mathsf{representation} + \mathsf{edges} \\ \mathsf{Thus, edge-skeleton \ computation \ subsumes \ vertex \ enumeration.} \end{split}$$

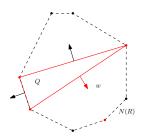
- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



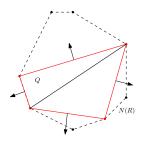
- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



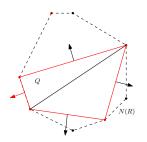
- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



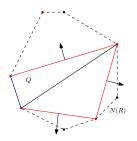
- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



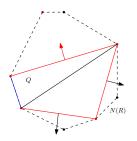
- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



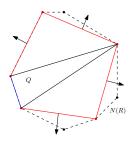
- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



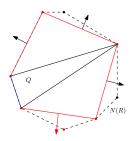
- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



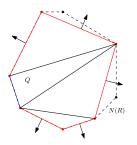
- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



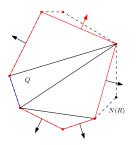
- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



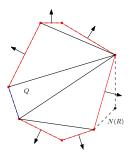
- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



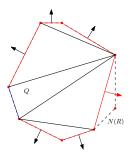
- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



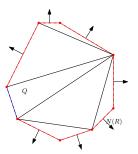
- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



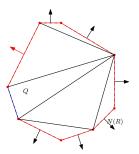
- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



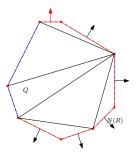
- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



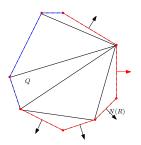
- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



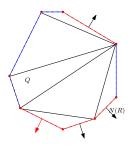
- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



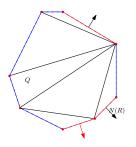
- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



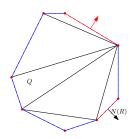
- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



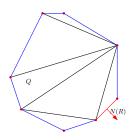
- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



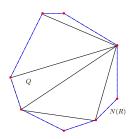
- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull



Algorithm sketch [Emiris-F-Konaxis-Peñaranda '12]

- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull

Complexity

Given $P\subseteq \mathbb{R}^d,$ H-, V-repr. & triang. T of P can be computed in

 $O(d^5ns^2)$ arithmetic operations + O(n + m) calls to OPT_P

s is the number of cells of T.

Algorithm sketch [Emiris-F-Konaxis-Peñaranda '12]

- ▶ first compute d + 1 aff. independent vertices of P and compute their convex hull
- at each step call OPT_P with the outer normal vector of a halfspace and
 - \rightarrow either validate this halfspace
 - \rightarrow or add a new vertex to the convex hull

Complexity

Given $P\subseteq \mathbb{R}^d,$ H-, V-repr. & triang. T of P can be computed in

 $O(d^5 n s^2)$ arithmetic operations $\,+\,O(n+m)$ calls to OPT_P

s is the number of cells of T. BUT: s can be $O(n^{\lfloor d/2 \rfloor})$ Vertex enumeration with edge-directions

Given OPT_P and a superset D of the edge directions D(P) of $P\subseteq \mathbb{R}^d,$ compute the vertices P.

Proposition (Rothblum-Onn '07)

Let $P\subseteq \mathbb{R}^d$ given by $OPT_P,$ and $D\supseteq D(P).$ All vertices of P can be computed in

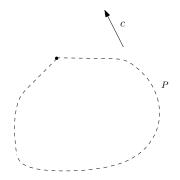
 $O(|D|^{d-1})$ calls to $\mathsf{OPT}_P+O(|D|^{d-1})$ arithmetic operations.

Input:

- ► OPT_P
- Edge vec. P (dir. & len.): D

Output:

Edge-skeleton of P



Sketch of **Algorithm**:

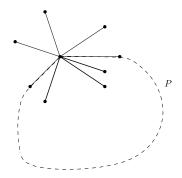
• Compute a vertex of P ($x = OPT_P(c)$ for arbitrary $c^T \in \mathbb{R}^d$)

Input:

- OPT_P
- Edge vec. P (dir. & len.): D

Output:

Edge-skeleton of P



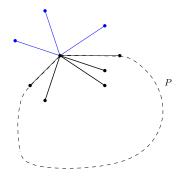
- Compute a vertex of P ($x = OPT_P(c)$ for arbitrary $c^T \in \mathbb{R}^d$)
- Compute segments $S = \{(x, x + d), \text{ for all } d \in D\}$

Input:

- OPT_P
- Edge vec. P (dir. & len.): D

Output:

Edge-skeleton of P



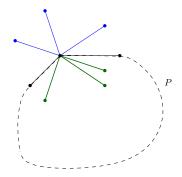
- Compute a vertex of P ($x = OPT_P(c)$ for arbitrary $c^T \in \mathbb{R}^d$)
- Compute segments $S = \{(x, x + d), \text{ for all } d \in D\}$
- ▶ Remove from S all segments (x, y) s.t. $y \notin P$ (OPT_P → SEP_P)

Input:

- OPT_P
- Edge vec. P (dir. & len.): D

Output:

Edge-skeleton of P



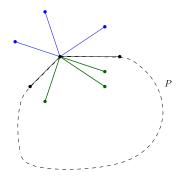
- Compute a vertex of P ($x = OPT_P(c)$ for arbitrary $c^T \in \mathbb{R}^d$)
- Compute segments $S = \{(x, x + d), \text{ for all } d \in D\}$
- ▶ Remove from S all segments (x, y) s.t. $y \notin P$ (OPT_P → SEP_P)
- Remove from S the segments that are not extreme

Input:

- OPT_P
- Edge vec. P (dir. & len.): D

Output:

Edge-skeleton of P



- Compute a vertex of P ($x = OPT_P(c)$ for arbitrary $c^T \in \mathbb{R}^d$)
- Compute segments $S = \{(x, x + d), \text{ for all } d \in D\}$
- ▶ Remove from S all segments (x, y) s.t. $y \notin P$ (OPT_P → SEP_P)
- Remove from S the segments that are not extreme
- Can be altered to work with edge directions only

Runtime of the edge-skeleton algorithm

Theorem

Given OPT_P and a superset of edge directions D of a welldescribed polytope P, the edge skeleton of P can be computed in oracle total polynomial-time

$$O\left(n\left(|D|\mathbb{O}(\langle P\rangle + \langle D\rangle) + \mathbb{LP}(4d^3|D|(\langle P\rangle + \langle D\rangle))\right)\right),$$

- $\blacktriangleright \langle D \rangle$ is the binary encoding length of the vector set D,
- n the number of vertices of P,
- $\mathbb{O}(\langle P \rangle)$: runtime of oracle conversion algorithm for P,
- $\mathbb{LP}(\langle A \rangle + \langle b \rangle + \langle c \rangle)$ runtime of max $c^T x$ over $\{x : Ax \le b\}$.

Applications

Corollary

The edge skeleton of resultant, secondary and discriminant polytopes (under some genericity assumption) can be computed in oracle total polynomial-time.

Convex combinatorial optimization: generalization of linear combinatorial optimization. [Rothblum-Onn '04]

Convex integer programming: maximize a convex function over the integer hull of a polyhedron. [De Loera et al. '09]

Conclusions

- New & simple algorithm for vertex enumeration of a polytope given by an oracle and known edge directions
- Remove the exponential dependence on the dimension
- First total polynomial time algorithms for resultant, discriminant polytopes (under some genericity assumption)

Future work

- Remove the assumption on the knowledge of edge directions
- Volume computation for polytopes given by optimization oracles

Thank you!