
EuroCG 2012, Assisi, Italy, March 19–21, 2012

Exact and approximate algorithms for resultant polytopes

Ioannis Z. Emiris∗ Vissarion Fisikopoulos∗ Christos Konaxis†

Abstract

We develop an incremental algorithm to compute the
Newton polytope of the resultant, aka resultant poly-
tope, or its projection along a given direction. Our
algorithm exactly computes vertex- and halfspace-
representations of the resultant polytope using an or-
acle producing resultant vertices in a given direction.
It is output-sensitive as it uses one oracle call per
vertex. We implement our algorithm using the exper-
imental CGAL package triangulation. A variant of
the algorithm computes successively tighter inner and
outer approximations: when these polytopes have, re-
spectively, 90% and 105% of the true volume, runtime
is reduced up to 25 times. Compared to tropical ge-
ometry software, ours is faster up to dimensions 5 or
6, and competitive in higher dimensions. Compared
to lrs, cdd, and polymake, the computation of con-
vex hull is fastest along with polymake. The resul-
tant is fundamental in algebraic elimination and in
implicitizing parametric hypersurfaces: we compute
the Newton polytope of surface equations in < 1sec,
when there are < 100 terms in the parametric poly-
nomials, which includes all common instances in geo-
metric modeling. Our method computes instances of
5, 6 or 7-dimensional polytopes with 35K, 23K or 500
vertices, respectively, in < 2hr.

Keywords. general dimension, convex hull, regu-
lar triangulation, polynomial resultant, CGAL imple-
mentation, experimental complexity

1 Introduction

Given pointsets A0, . . . , An ⊂ Zn, we define the Cay-
ley pointset

A :=

n⋃
i=0

(Ai × {ei}) ⊂ Z2n, ei ∈ Nn, (1)

∗Department of Informatics and Telecommunications, Na-
tional and Kapodistrian University of Athens, Athens, Greece.
{emiris,vissarion}@di.uoa.gr. Partial support from project
“Computational Geometric Learning”, which acknowledges the
financial support of the Future and Emerging Technologies
(FET) programme within the FP7 for Research of the Euro-
pean Commission, under FET-Open grant number: 255827.
†Archimedes Center for Modeling, Analysis & Computa-

tion (ACMAC), University of Crete, Heraklio, Greece, ckon-
axis@acmac.uoc.gr. Enjoys support from the FP7-REGPOT-
2009-1 project “Archimedes Center for Modeling, Analysis and
Computation”

where e0, . . . , en form an affine basis of Rn: e0 is the
zero vector, ei = (0, . . . , 0, 1, 0, . . . , 0), i = 1, . . . , n.
Clearly, |A| =

∑
i |Ai|, where | · | denotes cardinality.

By Cayley’s trick ([13, sec.5]) the regular tight mixed
subdivisions of the Minkowski sum A0 + · · ·+An are
in bijection with the regular triangulations of A; the
latter correspond to the vertices of the secondary poly-
tope Σ(A).

The Newton polytope of a polynomial is the convex
hull of the set of exponent vectors of monomials with
nonzero coefficient. Given n+1 polynomials in n vari-
ables, with fixed exponent sets Ai, i = 0, . . . , n, and
symbolic coefficients, their sparse (or toric) resultant
R is a polynomial in these coefficients which vanishes
exactly when the polynomials have a common root.
The resultant is the most fundamental tool in elimina-
tion theory, and is instrumental in system solving; it
is also important in changing representation of para-
metric hypersurfaces. Our algorithms compute the
Newton polytope of the resultant N(R), or resultant
polytope, in particular when some of the coefficients
are not symbolic, in which case we seek a projection
of the resultant polytope.

We exploit an equivalence relation defined on the
secondary vertices. The class representatives cor-
respond bijectively to the resultant vertices. This
information defines an oracle producing a resultant
vertex in a given direction, and avoids computing
Σ(A), which has much more vertices than N(R). Al-
though there exist efficient software computing Σ(A)
[12], it is useless in computing resultant polytopes.
For instance, in implicitizing parametric surfaces with
< 100 input terms, we compute the Newton poly-
tope of the equations in < 1sec, whereas Σ(A) is in-
tractable.

Moreover we compute some orthogonal projection
of N(R), denoted Π, in Rm:

π : R|A| → Rm : N(R)→ Π, m ≤ |A|.

By reindexing, this is the subspace of the first m
coordinates. It is possible that none of the coeffi-
cients is specialized, hence m = |A|, π is trivial, and
Π = N(R). Assuming the specialized coefficients
take sufficiently generic values, Π is the Newton poly-
tope of the corresponding specialization of R.

Let us review previous work. Sparse (or toric) elim-
ination theory was introduced in [9], where N(R) is
described via Cayley’s trick. In [13, sec.6] is proven
that N(R) is 1-dimensional iff |Ai| = 2, for all i, the

28th European Workshop on Computational Geometry, 2012

only planar polytope is the triangle, whereas the only
3-dimensional ones are the tetrahedron, the square-
based pyramid, and the polytope of two univariate tri-
nomials. Following [13, Thm.6.2], the 4-dimensional
polytopes include the 4-simplex, some N(R) obtained
by pairs of polynomials, and those of 3 trinomials,
which we can investigate with our code: for example,
we computed one with f -vector (19, 57, 57, 19). Trop-
ical geometry is a polyhedral analogue of algebraic
geometry which gives alternative ways of recovering
resultant polytopes [10].

For a more detailed presentation of the background
of this paper see [5].

2 Algorithms and complexity

This section presents our exact and approximate algo-
rithms for computing an orthogonal projection Π of
N(R) without computing N(R), and analyzes their
asymptotic complexity.

Given pointset V , reg subdivision(V,w) computes
the regular subdivision of its convex hull by project-
ing the upper hull of V lifted by the linear functional
w, and conv(V) computes the H-representation of its
convex hull. ExtremeΠ(A, w, π) computes a point
in Π, extremal in the direction w, by refining the
output of reg subdivision(A, w) into a regular trian-
gulation T of A, then returns π(ρT), where ρT is the
resultant vertex corresponding to T . It is clear that,
triangulation T constructed by ExtremeΠ, is regular
and corresponds to some vertex φT of Σ(A) which
maximizes inner product with ŵ = (w,~0) ∈ (R|A|)×.

The initialization algorithm computes an inner ap-
proximation of Π in both V- and H-representations
(denoted Q,QH , resp.), and triangulated. First, it
calls ExtremeΠ(A, w, π) for w ∈ W ⊂ (Rm)×; set W
is either random or contains, say, vectors in the 2m
coordinate directions. Then, it updates Q by adding
ExtremeΠ(A, w, π) and ExtremeΠ(A,−w, π), where
w is normal to hyperplane H ⊂ Rm containing Q, as
long as either of these points lies outside H. We stop
when these points do no longer increase dim(Q).

Lemma 1 The initialization algorithm computes
Q ⊆ Π s.t. dim(Q) = dim(Π).

Incremental Alg. 1 computes both V- and H-
representations of Π and a triangulation of Π, given
an inner approximation Q,QH of Π computed at ini-
tialization. A hyperplane H is legal if it is a sup-
porting hyperplane to a facet of Π, otherwise it is
illegal. At every step of Alg. 1, we compute v =
ExtremeΠ(A, w, π) for a supporting hyperplane H of
a facet of Q with normal w. If v /∈ H, it is a new
vertex thus yielding a tighter inner approximation of
Π by inserting it to Q, i.e. Q ⊂ CH(Q ∪ v) ⊆ Π,
where CH(·) denotes convex hull. This happens when

Algorithm 1: ComputeΠ (A0, . . . , An, π)

Input : A0, . . . , An ⊂ Zn, π : R|A| → Rm,
H-, V-rep. QH , Q, triang. TQ of Q ⊆ Π

Output: H-, V-rep. QH , Q, triang. TQ of Q = Π

A ←
⋃n

0 (Ai × ei); Hillegal ← ∅
foreach H ∈ QH do Hillegal ← Hillegal ∪ {H}
while Hillegal 6= ∅ do

select H ∈ Hillegal; Hillegal ← Hillegal \ {H}
w is the outer normal vector of H
v ← ExtremeΠ(A, w, π)
if v /∈ H ∩Q then

QHtemp ← conv(Q ∪ {v})
foreach (d− 1)-face f ∈ TQ, f ⊂ ∂H do

TQ ← TQ ∪ {faces of conv(f, v)}
foreach H ′ ∈ {QH \QHtemp} do
Hillegal ← Hillegal \ {H ′}

foreach H ′ ∈ {QHtemp \QH} do
Hillegal ← Hillegal ∪ {H ′}

Q← Q ∪ {v}; QH ← QHtemp

return Q,QH , TQ

the preimage π−1(f) ⊂ N(R) of the facet f of Q de-
fined by H, is not a Minkowski summand of a face
of Σ(A) having normal ŵ. Otherwise, there are two
cases: either v ∈ H and v ∈ Q, thus the algorithm
simply decides hyperplane H is legal, or v ∈ H and
v /∈ Q, in which case the algorithm again decides H
is legal but also insert v to Q.

Let us examine degenerate cases that may appear
during execution of Alg. 1. Let w be a normal to
a supporting hyperplane H of a facet of Q s.t. the
face f of N(R) extremal wrt ŵ contains a vertex ρT
which projects to relint(π(f)), where relint(·) denotes
relative interior. Then, if ExtremeΠ(A, w, π) returns
π(ρT), this is a point on ∂Π but not a vertex of Π. Of
course, in subsequent steps of the algorithm, the ver-
tices of π(f) will be computed, but this jeopardizes
the output-sensitivity of the algorithm. We resolve
such degeneracies by adding an infinitesimal generic
perturbation vector to w, thus obtaining wp. Since
the perturbation is arbitrarily small, ŵp shall be nor-
mal to a vertex of f extremal wrt w but projecting
to a vertex of π(f). The perturbation can be im-
plemented in ExtremeΠ, without affecting any other
parts of the algorithm. In practice, our implementa-
tion does avoid degenerate cases.

Lemma 2 Let vertex v be computed by
ExtremeΠ(A, w, π), where w is normal to a support-
ing hyperplane H of Q, then v 6∈ H ⇔ H is not a
supporting hyperplane of Π.

We now bound the complexity of our algorithm.
Beneath-beyond, given a k-dimensional polytope with

EuroCG 2012, Assisi, Italy, March 19–21, 2012

l vertices, computes its H-representation and a trian-
gulation in O(k5lt2), where t is the number of full-
dimensional faces (cells) [11]. Let |Π|, |ΠH | be the
number of vertices and facets of Π.

Lemma 3 Alg. 1 computes at most |Π|+ |ΠH | reg-
ular triangulations of A.

Let the size of a triangulation be the number of
its cells. Let sA denote the size of the largest trian-
gulation of A computed by ExtremeΠ, and sΠ that
of Π computed by Alg. 1. In ExtremeΠ, the com-
putation of a regular triangulation reduces to a con-
vex hull, computed in O(n5|A|s2A); to compute ρT
we need to compute the volume of all cells in T ;
this is done in O(sAn

3). The overall complexity of
ExtremeΠ becomes O(n5|A|s2A). Alg. 1 calls, in ev-
ery step, ExtremeΠ to find a point on ∂Π and insert
it to Q, or conclude that a hyperplane is legal. By
Lem. 3 it executes ExtremeΠ as many as |Π|+ |ΠH |
times, in O((|Π|+ |ΠH |)n5|A|s2A), and computes the
H-representation of Π in O(m5|Π|s2Π). Now we have,
|A| ≤ (2n+1)sA and as the input |A|,m, n grows large
we can assume that |Π| � |A| and thus sΠ dominates

sA. Moreover, sΠ(m+ 1) ≥ |ΠH |. Now, let Õ(·) im-
ply that polylogarithmic factors are ignored.

Theorem 4 The time complexity of Alg. 1 is
O(m5|Π|s2Π + (|Π|+ |ΠH |)n5|A|s2A), which becomes

Õ(|Π|s2Π) when |Π| � |A|.

This implies our algorithm is output sensitive. The
performance of our algorithm confirms this property,
see experimental evidence in Sect. 3.

Our algorithm readily yields an approximate vari-
ant: for each supporting hyperplane, we use its nor-
mal w to compute v =ExtremeΠ(A, w, π). Instead
of computing a convex hull, now simply take the
hyperplane parallel to H through v. The set of
these hyperplanes defines a polytope Qo ⊇ Π, i.e.
an outer approximation of Π. Thus, we have an
approximation algorithm by stopping Alg. 1 when
vol(Q)/vol(Qo) achieves a user-defined threshold.
Then, vol(Q)/vol(Π) is bounded by the same thresh-
old. Of course, vol(Q) is available by our incremental
convex hull algorithm. However, vol(Qo) is the criti-
cal step; we plan to examine algorithms that update
(exactly or approximately) this volume.

3 Implementation and Experiments

We implement Alg. 1 in C++ to compute Π; our code
is available in http://respol.sourceforge.net. All
timings are on an Intel Core i5-2400 3.1GHz, with
6MB L2 cache and 8GB RAM, running 64-bit De-
bian GNU/Linux. We rely on CGAL, using mainly a
preliminary version of package triangulation under
development, working in general dimension, for both

0.01

0.1

1

10

100

1000

10000

100000

10 15 20 25 30 35 40 45

ti
m

e
(s

ec
)

Number of points

Respol-hash
Respol-no hash

Gfan-TTR
Gfan-NFSI

Figure 1: Comparison of respol (hashing and not
hashing determinants) and 2 algorithms of Gfan for
m = 4; y-axis in logarithmic scale.

regular triangulations as well as for the vertex and
halfspace-representation of Π.

We first compare 4 state-of-the-art exact con-
vex hull packages, triangulation [3], polymake’s
beneath-beyond (bb) [8]; cdd [7], and lrs [1], to
compute the H-rep. from the vertices ofΠ (offline ver-
sion) actually extending the work in [2] for the new
class of polytopes Π. We also test triangulation

by inserting points in the order that Alg. 1 com-
putes them (online version). The experiments show
that triangulation, bb are faster than lrs, cdd and
triangulation online is 2.5 times faster than offline
(Table 1). Moreover, triangulation maintains a
polytope with its boundary and its interior triangu-
lated which is useful when we compute regular trian-
gulations wrt to a lifting (ExtremeΠ).

We perform an experimental analysis of our algo-
rithm confirming its output-sensitivity : its behaviour
is subexponential wrt to both input and output and
its output is subexponential wrt the input. Moreover,
the size of the input bounds polynomially the size of
the triangulation of the output.

The resultant is fundamental in elimination, and in
implicitizing parametric hypersurfaces: we compute
the polytope of surface equations in < 1sec, assum-
ing < 100 terms in parametric polynomials, which
includes all common instances in geometric modeling,
whereas the corresponding Σ(A) are intractable. By
using the hashing determinants scheme [6] we gain a
speedup of 18, 100 times when m = 3, 4 respectively.
For m = 4 we computed in < 2min an instance where
|A| = 37 and would take > 1hr to compute other-
wise. Thus, when the dimension and |A| becomes
larger, this method allows us to compute instances of
the problem that would be intractable otherwise. We
explore the limits of our implementation. By bound-
ing runtime to < 2hr, we compute instances of 5-,
6-, and 7-dimensional Π with 35K, 23K and 500 ver-
tices, resp. (Table 1). We also compare with the im-
plementation of [10], based on Gfan library. Our code

dim(Π) |A| # of Π time
vertices respol triang/on triang/off bb cdd lrs

3 2490 318 85.03 0.07 0.10 0.067 1.20 0.097
4 37 2852 97.82 2.85 3.91 2.29 335.23 39.41
5 24 35768 4610.31 238.76 577.47 339.05 > 1hr > 1hr
6 19 23066 6556.42 1191.8 2754.3 > 1hr > 1hr > 1hr
7 17 500 302.61 267.01 614.34 603.12 10495.14 358.79

Table 1: Total time of our code (respol) and comparison of online version of triangulation (on) and offline
versions of all convex hull packages for computing the H-representation of Π.

is faster up to dimensions 5, 6, and competitive in
higher dimensions.

We analyze the computation of inner and outer
approximations Q and QHo . We test the variant of

Sect. 2 by stopping it when vol(Q)

vol(Π)
> 0.9. In the ex-

periments, the number of Q vertices is < 15% of the
Π vertices, thus the speedup is up to 25 times faster

than the exact algorithm and
vol(QH

o)

vol(Π)
< 1.04. Next,

we study procedures that compute only V-rep. of Q
by counting the random vectors uniformly distributed

on the m-sphere needed to obtain vol(Q)
vol(Π) > 0.9. This

procedure runs up to 10 times faster than the exact al-

gorithm but does not provides guarantees for vol(Q)

vol(Π)
.

4 Future work

The resultant edges are associated to certain flips on
mixed cells [13]. We have studied them algorithmi-
cally [4] and may revisit them in conjunction with
the current approach: for every computed vertex of
N(R) apply all such flips to generate its neighbors.

A theoretical question is whether there is a poly-
nomial total time incremental algorithm for Π. For
this we wish to study the structure of N(R); [9, 13],
whereas our code sheds light to this issue by comput-
ing examples.

Acknowledgment. We thank L. Peñaranda for his use-

ful help on implementation and experiments. We also

thank O. Devillers and S. Hornus for discussions on

triangulation, and A. Jensen and J. Yu for discussions

on their approach and for sending us a beta version of

their code.

References

[1] D. Avis. lrs: A revised implementation of
the reverse search vertex enumeration algorithm.
In Polytopes - Combinatorics and Computation,
volume 29 of Oberwolfach Seminars, pp. 177–198.
Birkhäuser-Verlag, 2000.

[2] D. Avis, D. Bremner, and R. Seidel. How good
are convex hull algorithms? Comput. Geom.:
Theory & Appl., 7:265–301, 1997.

[3] J.-D. Boissonnat, O. Devillers, and S. Hornus.
Incremental construction of the Delaunay trian-
gulation and the Delaunay graph in medium di-
mension. In SoCG, pp. 208–216, 2009.

[4] I.Z. Emiris, V. Fisikopoulos, and C. Konaxis.
Regular triangulations and resultant polytopes.
In Proc. Europ. Workshop Computat. Geometry,
Dortmund, Germany, 2010.

[5] I.Z. Emiris, V. Fisikopoulos, C. Konaxis, and
L. Peñaranda. An output-sensitive algorithm
for computing projections of resultant polytopes.
arXiv:1108.5985v2 [cs.SC], 2011.

[6] I.Z. Emiris, V. Fisikopoulos, and L. Peñaranda.
Optimizing the computation of sequences of de-
terminantal predicates. Technical Report CGL-
TR-14, NKUA, 2011.

[7] K. Fukuda. cdd and cdd+ home page.
ETH Zürich. http://www.ifor.math.ethz.ch/
∼fukuda/cdd home, 2008.

[8] E. Gawrilow and M. Joswig. Polymake: an ap-
proach to modular software design in computa-
tional geometry. In Proc. Annual ACM Symp.
Comp. Geom., pp. 222–231. ACM Press, 2001.

[9] I.M. Gelfand, M.M. Kapranov, and A.V. Zelevin-
sky. Discriminants, Resultants and Multidimen-
sional Determinants. Birkhäuser, Boston, 1994.

[10] A. Jensen and J. Yu. Computing tropical resul-
tants. arXiv:math.AG/1109.2368v1, 2011.

[11] M. Joswig. Beneath-and-beyond revisited. In
M. Joswig and N. Takayama, eds., Algebra, Ge-
ometry, and Software Systems, Mathematics and
Visualization. Springer, Berlin, 2003.

[12] J. Rambau. TOPCOM: Triangulations of point
configurations and oriented matroids. In A.M.
Cohen, X-S. Gao, and N. Takayama, eds., Math.
Software: ICMS, pp. 330–340. World Scientific,
2002.

[13] B. Sturmfels. On the Newton polytope of the
resultant. J. Algebraic Combin., 3:207–236, 1994.

