
EuroCG 2012, Assisi, Italy, March 19–21, 2012

Optimizing the computation of sequences of determinantal predicates

Ioannis Z. Emiris∗ Vissarion Fisikopoulos∗ Luis Peñaranda∗

Abstract

The orientation predicate is the core procedure in
many important geometric algorithms, such as con-
vex hull and triangulation computations. As the di-
mension of the computation space grows, a higher per-
centage of the computation time is consumed by these
predicates. In this paper we study the computation
of sequences of determinantal predicates in a signle or
a sequence of convex hull computations.

We propose a method that improves the amortized
complexity of the determinants involved in a convex
hull computation. Moreover, we study how can we
use the computation done in a convex hull construc-
tion to improve the construction of subsequent convex
hulls. Our two main tools are the dynamic determi-
nant computation and the reusage of determinantal
minors. Finally, we implement a simple method that
optimizes the computation of subsequent determinan-
tal predicates in both single and sequence of convex
hull computations. The experiments show in the sin-
gle convex hull scenario a speedup up to dimension
5 and in sequences of convex hulls a speedup of 100
times when the dimension is 6.

Keywords: orientation predicate, determinant, con-
vex hull, triangulation, CGAL implementation.

1 Introduction

The orientation predicate is the core procedure in
many important geometric algorithms, such as con-
vex hull and triangulation computations. In general
dimension d, the orientation of d + 1 points is com-
puted as the determinant of a matrix containing the
coordinates of the points as columns, plus one last
row full of ones. As the dimension grows, a higher per-
centage of the computation time is consumed by these
predicates. In this paper we study the computation
of sequences of determinantal predicates in a signle
or a sequence of convex hull computations. A typi-
cal example of the second is the computation of many

∗National and Kapodistrian University of Athens, Depart-
ment of Informatics and Telecommunications, Athens, Greece.
{emiris,vissarion,lpenaranda}@di.uoa.gr. Partial support from
project “Computational Geometric Learning”, which acknowl-
edges the financial support of the Future and Emerging Tech-
nologies (FET) programme within the Seventh Framework Pro-
gramme for Research of the European Commission, under FET-
Open grant number: 255827.

regular triangulations of the same pointset arise in al-
gorithms that compute secondary [14] and resultant
polytopes [7]. This study can be extended to other de-
terminantal predicates such as inCircle/inSphere and
volume.

Our contribution is twofold. First, we propose a
method that improves the amortized complexity of
the determinants involved in a convex hull computa-
tion (Sect. 2). This method uses the dynamic determi-
nant evaluation procedure introduced in [16] to solve
problems in graphs. Moreover, we study sequences
of convex hull computations and propose a method
that use the computation done in a convex hull con-
struction to improve the construction of subsequent
convex hulls (Sect. 3). Second, we implement a simple
method that optimizes the computation of subsequent
determinantal predicates in both single and sequence
of convex hull computations. The experiments show
in the first scenario a speedup up to dimension 5 and
in the second a speedup of 100 times when the dimen-
sion is 6 (Sect. 4).

Let us review previous work. There is a variety
of algorithms and implementations for computing the
determinant of a d × d matrix. By denoting O(dω)
their complexity, the best current ω is 2.697263 [11].
However good asymptotic complexity does not imply
respectively good behavior in practice for small and
medium dimensions. For instance, LinBox [5] which
implements algorithms with state-of-the-art asymp-
totic complexity, introduces a significant overhead in
medium dimensions, and seems most suitable in very
high dimensions (typically > 100). Eigen [9] seems to
be suitable for medium to high dimensions, whereas
CGAL [4] determinants proved to be efficient in low to
medium dimensions. On the other hand, decomposi-
tion methods have complexity O(n3), but they require
the construction of intermediate objects, which adds
a constant cost in computations and makes them slow
in practice. There exist other methods that avoid di-
visions, such as [15] with complexity O(n4) and [2]
with complexity O(nM(n)) where M(n) is the com-
plexity of matrix multiplication. Albeit simpler to
implement, these algorithms also construct interme-
diate objects and thus suffer the same practical prob-
lem as decomposition methods. This intermediate ob-
ject construction problem proved to be, in practice,
the bottleneck of determinant computation in small
dimensions, and is the reason why we opted for an
implementation of the Laplace expansion algorithm.

28th European Workshop on Computational Geometry, 2012

There exists also a variety of algorithms for determi-
nant sign computation [3, 1]. On the side of sequences
of determinants, the reference software for computing
triangulations of a set of points, TOPCOM [14], com-
putes all orientation determinants that will be needed
and stores their signs.

2 Convex hull computations

This section discusses the problem of dymanic com-
putation of determinants produced in geometric com-
putations such as convex hull and triangulation al-
gorithms. These algorithms rely on the signs of de-
terminantal orientation predicates. The orientation
predicate of d + 1 d-dimensional points is the sign of
the determinant of a (d+ 1) × (d+ 1) matrix, where
each column contains the d coordinates of each point,
plus a 1 on the last place.
In the dynamic determinant problem, a d×d matrix

A is given. Then, allowing some preprocessing, we
should be able to handle updates of elements of A
and queries for the current value of the determinant.

Lemma 1 [16, Thm.2] The dynamic determinant
problem can be solved in O(dω) for preprocessing,
O(d2) for one column updates and O(1) for queries.

We want to apply this result to incremental con-
vex hull algorithms. Let A ⊂ Rd be a pointset with
CH(A) of dimension d, where CH(·) denote the con-
vex hull. In particular, we focus on the Beneath-
and-Beyond (BB) algorithm [6, Sect. 8.4], where the
construction of CH(A) is essentially the construction
of a placing triangulation of CH(A) [13, Sect. 4.3].
Given A, the algorithm at the first step computes a
d-simplex and at every step it adds points by keeping
a triangulated convex hull of the inserted points. At
each step, a new point p is connected with all its visi-
ble facets. In order to determine if a facet f is visible
from p we have to compute an orientation predicate
that involves p and the points of f . For each visible
facet f a new full dimensional face (cell) σ is created,
by connecting p to the points of f . Every cell σ has
a vertex v that is not a vertex of f . At every step
if we know the value of the orientation determinant
involves the vertices of cell σ we only need to compute
the new value if we change v with p in this determi-
nant. We can use Lem. 1 to compute this determinant
in O(d2).
The idea is to store the value of the orientation

predicate in its corresponding cell together with an in-
verse d×dmatrix that is used for updates [16, Sect. 4].
Denote t the number of cells of the resulting placing
triangulation of CH(A) that stores the determinan-
tal values and the inverse matrices. Note that every
cell constructed by the algorithm corresponds to an
orientation predicate involving its points. Thus, the

total number of predicates computed is t. We only
compute the first predicate, that corresponds to the
initial d-simplex, from scratch in O(dω). Then, the
following holds.

Theorem 2 The orientation predicates of BB algo-
rithm can be computed in O(d2) amortized time and
O(d2t) space.

This result improves the amortized computational
complexity of the determinants involved in convex
hull computation using BB from O(dω) to O(d2).

3 Sequences of convex hull computations

In this section we study the problem of computing a
sequence of regular triangulations of a d-dimensional
pointset A for given lifting vectors w. This can be
done by computing the convex hull of the lifted A ac-
cording to w and project its upper hull. This idea
has already appeared in [7] where, given a system of
n + 1 polynomials in n variables, the proposed algo-
rithm computes the Newton polytope (or a projection
of it) of the resultant of this system. Given the input
polynomials it first defines a pointset A in dimension
2n, ie. d = 2n, and it needs to compute the regular
triangulations of A given some lifting vectors. Similar
problems often appear in combinatorial geometry, as
in computations of secondary polytopes [14] or in the
computation of volumes (ie. the volume predicate) of
the cells of a triangulation. Again motivated by [7],
we want to compute the volume of the cells of regular
triangulations of A given some lifting vectors.
The basic observation is that in every convex hull

computation the input points differ only in their last
coordinate, which comes from the different lifting vec-
tors. Thus, we expect that many orientation predi-
cates appear in this computation will be similar. Con-
sider now the d× |A| matrix with the points of A as
columns. Define P as the extension of this matrix by
adding lifting values w as the last row. We use the
Laplace (or cofactor) expansion along the last row for
computing the determinant of the square submatrix
formed by any d+1 columns of P ; wlog these are the
first d+1 columns a1, . . . , ad+1. Let 〈a1, . . . , ad+1〉 \ i
be the vector 〈a1, . . . , ad+1〉 without its i-th element;
P〈a1,...,ad+1〉\i is the d × d matrix obtained from the
d first elements of the columns whose indices are in
〈a1, . . . , ad+1〉 \ i.
The orientation predicate is the sign of the de-

terminant of Phom
〈a1,...,ad+2〉, constructed by columns

a1, . . . , ad+2 when we add ~1 ∈ Rd+2 as last row.
Computing a regular triangulation is a long sequence
of such predicates with different ai’s. We expand
along the last two rows and compute the determi-
nants |P〈a1,...,ad+2〉\{i,j}| for

(
d+2
2

)
combinations of

i, j ∈ {1, . . . , d+2}. The volume predicate equals the

EuroCG 2012, Assisi, Italy, March 19–21, 2012

determinant of Phom
〈a1,...,ad+1〉, constructed by columns

a1, . . . , ad+1 when we replace its last row by ~1 ∈ Rd+1.
We expand along the last two rows and compute the
minor determinants, as in the previous case.

Example 1 Consider the following matrix corre-
sponds to a poinset A given the lifting vector w =
{w1, . . . , w9}.

0 0 0 1 1 2 0 0 0
0 0 0 1 2 0 1 2 1
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
w1 w2 w3 w4 w5 w6 w7 w8 w9

Consider the computation of an orientation predicate
as a computation of

(
6
4

)
= 15 (4×4) minors using the

Laplace expansion. If we have computed |Phom
〈1,2,3,4,5,6〉|

then the computation of |Phom
〈1,2,3,4,5,7〉| needs only

(
6
4

)
−(

5
4

)
= 10 new minors. More interestingly, by giving a

new lifting vector ŵ′ we can compute |P ′ hom
〈1,2,3,4,5,6〉|

without computing any new minors.

Our contribution consists in maintaining a data
structure with the computed minors which are inde-
pendent of w and once computed they can be reused
at subsequent steps of the algorithm. The main ad-
vantage of our scheme is that, for a new w, the only
change in P is its last row, hence computing the new
determinants can be done by reusing stored minors.

Lemma 3 The complexity of the orientation and vol-
ume predicates is O(n2) and O(n), respectively, if all
minors have already been computed.

4 Hashing determinants: implementation and ex-
periments

We propose and implement in C++ the hashing deter-
minants scheme which consists in using the Laplace
expansion to compute determinants and store the
computed minors in a hash table. We perform exper-
imental tests of our implementation in the two sce-
narios analysed in Sect. 2, 3. In the first we compute
the convex hull of an input pointset and in the second
we compute a sequence of convex hulls in the context
of computing resultant polytopes [7]. All timings are
on an Intel Core i5-2400 3.1GHz, with 6MB L2 cache
and 8GB RAM, running 64-bit Debian GNU/Linux.
To avoid constructing a new matrix each time we

compute a determinant, we keep a matrix with all the
points. The evaluation of the determinant using the
Laplace expansion is performed recursively by using
only the indices of this matrix.
For the hash table implementation, we looked for

a hashing function that takes as input a vector of

size_t and returns a size_t that minimizes col-
lisions. We considered many different hash func-
tions, including some variations of the well-known
FNV hash [8]. We obtained the best results with
the implementation of Boost Hash [10], which per-
forms a left fold on the input vector, using start value
0 and f(x,y)=x^(y+0x9e3779b9+(x<<6)+(x>>2)),
and has a constant lookup cost in practice. For convex
hull computations we rely on CGAL, using mainly a
preliminary version of package triangulation under
development, working in general dimension.

In the case of a single convex hull, we show in
Fig. 1 (left) the timings of computing the convex
hull of points with rational coefficients, uniformly dis-
tributed in the cube [−100, 100]d, where the dimen-
sion d ranges between 2 and 6. Experiments show
that our method performs better up to dimension 5.
We expect much better results for higher dimensions
by implementing the algorithm of Sect. 2 which sug-
gests to store an inverse matrix instead of storing the
minors of the Laplace expansion.

In the case of sequential determinants, we gain a
speedup of 18 times for 4 dimensional convex hulls.
In dimension 6 we gain a speedup of 100 times (Fig. 1
(right)). We computed in < 2min an instance where
|A| = 37 and would take > 1hr to compute other-
wise. Thus, when the dimension and |A| becomes
larger, this method allows us to compute instances
that would be intractable otherwise.

An advantage of this scheme is that it doesn’t need
to construct a matrix each time it computes a predi-
cate. Many determinant algorithms modify the input
matrix; this makes necessary to create a new matrix
and introduces a constant overhead on each minor
computation.

The drawback is the amount of storage, which is in
O(n!). The hash table can be cleared at any moment
to limit memory consumption, at the cost of dropping
all previously computed minors. In our experiments,
we obtained a good tradeoff between efficiency and
memory consumption by clearing the hash table when
it reaches 106 minors.

A more sophisticated approach, inspired from the
paging problem in computer systems, is the following.
When a new determinant is computed and the size of
the data structure has reached a threshold size, evict a
determinant from the data structure and add the new
one. A replacement strategy specifies the choice of
which determinant to evict. However, the hash table
data structure is not the most suitable for this. On the
other hand, tries [12] permit to index the stored val-
ues using a tree of depth d (the size of the matrices),
thus yielding a O(d) lookup and insertion time (since
d is small, this is comparable to the cost of our hash-
ing function). Tries are more suitalbe to implement
replacement strategies. For instance, a trie permits
us to store, on each node, the number of lookups on

28th European Workshop on Computational Geometry, 2012

 0.01

 0.1

 1

 10

 100

 1000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

tim
e

Number of points

hash
no hash

Figure 1: Time for computing a convex hull of a point set A as function of the number of input points. Graphs
correspond to different ambient dimensions of the input points i.e. from bottom to top dim(A) = 2, . . . , 6 (left).
Performance comparisons for hashing versus non-hashing for sequences of 6-dimensional convex hulls; the number
of input points range from 10 to 45 (right).

all its sucessors. This information permits to easily
prune the less used subtrees at a given depth.

5 Future work

In the theoretical side we expect to reduce the com-
plexity of BB algorithm by using dynamic determi-
nant computations as suggested in Sect. 2.
Our implementation can be used in a general man-

ner, not only inside the CGAL package. The next step
is, thus, to develop an interface that permits using
the hashed determinants technique transparently (i.e.,
without knowledge of points’ indices). We should also
consider implementing other determinant algorithms
(such as [15] and [2]) to be competitive in medium di-
mensions, as well as the algorithm presented in Sect. 2
and tries with replacement strategies as presented in
Sect. 4. Finally, we plan to submit our functions as a
package to CGAL.

Acknowledgment We thank O. Devillers and
S. Hornus for discussions on triangulation.

References

[1] J. Abbott, M. Bronstein, and T. Mulders. Fast deter-
ministic computation of determinants of dense matri-
ces. In ISSAC, pages 197–203, 1999.

[2] R.S. Bird. A simple division-free algorithm for com-
puting determinants. Inf. Process. Lett., 111:1072–
1074, November 2011.

[3] H. Brönnimann, I.Z. Emiris, V. Pan, and S. Pion.
Sign determination in Residue Number Systems.
Theor. Comp. Science, Spec. Issue on Real Numbers
& Computers, 210(1):173–197, 1999.

[4] CGAL: Computational geometry algorithms library.
http://www.cgal.org.

[5] J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi,
B. Hovinen, E. Kaltofen, B.D. Saunders, W.J.
Turner, and G. Villard. Linbox: A generic library
for exact linear algebra. In ICMS, pages 40–50, 2002.

[6] H. Edelsbrunner. Algorithms in combinatorial geom-
etry. Springer-Verlag New York, Inc., New York, NY,
USA, 1987.

[7] I.Z. Emiris, V. Fisikopoulos, C. Konaxis, and
L. Peñaranda. An output-sensitive algorithm
for computing projections of resultant polytopes.
arXiv:1108.5985v2 [cs.SC], 2011.

[8] G. Fowler, L.C. Noll, and P. Vo. FNV hash.
www.isthe.com/chongo/tech/comp/fnv/, 1991.

[9] G. Guennebaud, B. Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[10] D. James. Boost functional library. www.boost.org/
libs/functional/hash, 2008.

[11] E. Kaltofen and G. Villard. On the complexity of
computing determinants. Computational Complexity,
13:91–130, 2005.

[12] D.E. Knuth. The Art of Computer Programming,
Volume III: Sorting and Searching. Addison-Wesley,
1973.

[13] J.A. De Loera, J. Rambau, and F. Santos. Triangu-
lations: Structures for Algorithms and Applications,
volume 25 of Algorithms and Computation in Math-
ematics. Springer, 2010.

[14] J. Rambau. TOPCOM: Triangulations of point con-
figurations and oriented matroids. In A.M. Cohen,
X-S. Gao, and N. Takayama, editors, Math. Software:
ICMS, pages 330–340. World Scientific, 2002.

[15] G. Rote. Division-free algorithms for the determi-
nant and the Pfaffian: algebraic and combinatorial
approaches. In Comp. Disc. Math., pages 119–135,
2001.

[16] P. Sankowski and M. Mucha. Fast dynamic transi-
tive closure with lookahead. Algorithmica, 56:180–
197, 2010. 10.1007/s00453-008-9166-2.

