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Regular triangulations and resultant polytopes
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Abstract

We describe properties of the Resultant polytope of a
given set of polynomial equations towards an output-
sensitive algorithm for enumerating its vertices. In
principle, one has to consider all regular fine mixed
subdivisions of the Minkowski sum of the Newton
polytopes of the given equations. By the Cayley trick,
this is equivalent to computing all regular triangula-
tions of another point set in higher dimension. How-
ever, the number of all regular triangulations is gener-
ally much larger than that of the vertices of the Resul-
tant polytope, as illustrated by our experiments [3].
Thus, we study output-sensitive methods by defining
classes of subdivisions, called configurations, which
yield the same resultant vertex. Moreover, we offer
algorithmic versions of certain results by Sturmfels
[11], regarding the edges of the Resultant polytope.
Lastly, we settle some easy cases, and discuss harder
examples.

1 Introduction

We are interested in algorithms that compute the
Newton polytope of the Resultant, called Resultant
polytope, of a given set of polynomial equations. Re-
sultants are fundamental objects in polynomial equa-
tion solving [12], and in implicitizing parametric (hy-
per)surfaces [2]. In fact, a projection of the resul-
tant polytope yields the Newton polytope of the (un-
known) implicit equation, thus reducing implicitiza-
tion to a problem in linear algebra. One approach is
to compute the regular fine mixed subdivisions of the
Minkowski sum of the Newton polytopes of the given
equations. Another is based on tropical geometry, e.g.
[12, ch.9].

These regular fine mixed subdivisions correspond
by Cayley trick to the regular triangulations of a point
set A. For each point set A, its Secondary polytope’s
vertices correspond to the regular triangulations of A
and there are output-sensitive that enumerate them
[6, 10]. However, the number of vertices of a Sec-
ondary polytope can be exponential in |A| and there
is a many to one correspondence of Secondary ver-
tices to the vertices of the Resultant polytope, illus-
trated by our experiments [3]. On the other hand,
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for the Resultant polytope, we only know a weak
exponential upper bound on the number of vertices
[11, prop.6.1]. The above results force us to focus on
output-sensitive algorithms that enumerate classes of
subdivisions which yield the same resultant vertex,
without enumerating the entire Secondary polytope.
We present our work in progress to this end. We offer
algorithmic versions of certain results in [11] regard-
ing the edges of the Resultant polytope. Lastly, we
settle some easy cases, and discuss harder examples.

2 Triangulations, Mixed Subdivisions, and Poly-
nomial Systems

Let A be a point set in Rd. A polyhedral subdivision
of A is a collection of subsets of A, the cells of the
subdivision, such that the union of the cells’ convex
hulls equals the convex hull of A and every pair of
convex hulls of cells intersect at a common face. A
polyhedral subdivision is regular if it can be obtained
as the projection of the lower hull of the lifted point
set A, for some lifting to Rd+1. A triangulation T is
a polyhedral subdivision of A, whose cells are all sim-
plices. Circuits are the minimum affinely dependent
subsets of a point set that have exactly two triangula-
tions. A bistellar flip transforms one triangulation to
another. Let T be a triangulation of A and Z+ ⊆ T
the triangulation of a circuit Z ⊆ A. We say T is
supported on Z if, by changing the current triangu-
lation Z+ of Z to the other, denoted Z−, we obtain
another triangulation T ′. This is a bistellar flip of T
supported on Z. If |A| = n, its Secondary polytope
Σ(A) has dimension n− d− 1, its vertices correspond
to the regular triangulations of A, and its edges to
bistellar flips [5, 8].

Let A0, . . . , Ak be point sets in Rd and A = A0 +
· · ·+Ak their Minkowski sum. A subset of A is called
Minkowski cell if it can be written as F0 + · · ·+Fk for
Fi ⊆ Ai. A Minkowski cell is fine if all Fi are affinely
independent and

∑k
i=1 dim(CH(Fi)) = d. When k =

d, a Minkowski cell is i-mixed if it is a Minkowski
sum of k edges and a vertex, i.e., |Fj | = 2 for j 6= i,
|Fi| = 1. When k = d−1, a Minkowski cell is mixed if
it is a Minkowski sum of edges. A regular polyhedral
subdivision of A is a regular fine mixed subdivision
if all its cells are Minkowski and fine. From now on
we consider all mixed subdivisions to be regular and
fine, and focus on k = d, unless otherwise noted. This
is the most important case because it covers system
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solving and implicitization; implicitization of surfaces
in R3 corresponds to k = d = 2.

Let f = f0, . . . , fk be a polynomial system on k
variables. The support Ai ∈ Nk of fi is the set of
its exponent vectors corresponding to nonzero coeffi-
cients. For any subset J ⊂ {0, . . . , k}, let r(J) denote
the rank of the affine lattice generated by

∑
j∈J Aj .

We assume that, for I = {0, . . . , k}, r(I) = |I| − 1,
and r(J) ≥ |J | for any proper subset J ⊂ I. The
Newton polytope N(fi) of a polynomial fi is the con-
vex hull of its support. The (sparse) Resultant R of
f is a polynomial on the coefficients of f such that
R = 0 iff f has a solution in (C∗)k. It generalizes the
determinant of an overconstrained linear system and
the Sylvester resultant of two univariate polynomi-
als. We call N(R) the Resultant polytope and extreme
term of R a monomial which corresponds to a vertex
of N(R).

Proposition 1 [11, thm.2.1] Following the above no-
tation and assumptions, given a system f and a mixed
subdivision of the Minkowski sum of its supports, we
get an extreme term of the resultant R equal to

±
k∏
i=0

∏
σ

c
vol(σ)
iFi

,

where σ = F0 + · · ·+ Fk is an i-mixed cell and vol(·)
denotes Euclidean volume.

By the Cayley trick [5], there is a point set
C(A0, . . . , Ak) ⊂ Rd+k s.t. all mixed subdivisions of
A = A0 + A1 + · · · + Ak are in 1-1 correspondence
with the regular triangulations of C(A0, A1 . . . , Ak).
Hence, one can obtain the N(R) vertices by enumerat-
ing all vertices of the corresponding Secondary poly-
tope Σ(A0, A1 . . . , Ak). Moreover, N(R) is a Mink-
owski summand of Σ(A0, A1 . . . , Ak) [11]. Methods to
enumerate regular triangulations have been proposed
in [6, 10], and are experimented with in [3]. But we
can do better.

When k = d − 1, mixed cell configurations are
the equivalence classes of mixed subdivisions with the
same mixed cells. These are defined, along with a def-
inition of flips between these classes, in [9].

When k = d, we focus on the i-mixed cells in order
to compute the vertices of N(R). In [7], there is an
extension of mixed cells configurations to classes con-
taining the same i-mixed cells for all i ∈ {0, . . . , k},
called i-mixed cell configurations. It turns out that
this notion is similar to the I-mixed cell configura-
tions of [1]. We now characterize the flips between
i-mixed cell configurations, and generalize the flip de-
fined in [9] between mixed cell configurations.

We shall say that a circuit Z of a triangulation T
supported on Z, involves an i-mixed cell F0 + · · ·+Fk,
if the cell C(F0, . . . , Fk) of T does not belong to the
triangulation obtained by flipping on Z.

cub non-cub non-cub

Fig. 1: An example of a cubical and two non cubical flips.

Theorem 2 ([7]) Let Z = (Z0, . . . , Zk) be a circuit
and T a triangulation supported on Z. Suppose that
Z involves an i-mixed cell F0 + · · ·+ Fk. Then, there
exists r ∈ {0, . . . , k}, and c ∈ Ar s.t. for all i 6= r,
Zi = Fi or Zi = ∅, and Zr = Fr ∪{c} or Zr = {vr, c},
where vr is a vertex of edge Fr.

A flip on a circuit as described in this theorem de-
stroys at least one i-mixed cell leading to a new i-
mixed cell configuration. Moreover, we can check ef-
ficiently if a circuit satisfies the conditions of th. 2
by examining only the cardinalities of the sets Zi.
An algorithm using these flips enumerates only the
i-mixed cell configurations, without enumerating all
mixed subdivisions, which are more numerous.

The Ξ polytope is defined in [1] for k ≤ d−1. In par-
ticular, when k = d− 1, Ξ has vertices corresponding
to mixed cell configurations, and edges corresponding
to flips between them. Based on this, we define Ξ
in the case k = d to have vertices corresponding to
i-mixed cell configurations. Clearly, Ξ lies, in terms
of number of vertices, between the Secondary poly-
tope and N(R). In the sequel, Ξ or Ξ(A0, A1, . . . , Ak)
refers to this polytope.

3 R-equivalent Classes

By prop. 1, several mixed subdivisions may produce
the same extreme term of the Resultant. We call these
subdivisions R-equivalent. Similarly, two subdivisions
may lead to the same extreme term, even if they be-
long to the same i-mixed cell configuration. These R-
equivalent classes correspond to the vertices of N(R).
There are some flips that connect two subdivisions in
different R-equivalent classes, hence they correspond
to the edges of N(R).

Sturmfels [11, thm.5.2] calls these flips cubical.
Consider the union of cells affected by one such flip.
If the union, lifted generically to Rd+1, forms an affine
cube, i.e. equals the Minkowski sum of k + 1 edges,
then the flip is cubical and consists in replacing the
“bottom” subdivision by the “top” subdivision, or
vice versa (fig. 1, fig. 2). However, this definition of
cubical flips is not algorithmically efficient, so we pro-
vide a more algorithmic characterization.

Let us start with the generic case, where every two
faces of the same dimension in two different CH(Ai)
are not parallel.

Lemma 3 Let S be a mixed subdivision of A0+ · · ·+
Ak. Then S has a cubical flip iff there exists a set
{C0, . . . , Ck} of i-mixed cells Ci = F0+. . . +ai+· · ·+
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Fig. 2: A degenerate cubical flip; two (horizontal bold)
edges from different Ai’s are parallel.

Fk, for i = {0, 1, . . . , k}, where ai ∈ Fi ⊆ Ai, |Fi| = 2,

such that, if C =
⋃k
i=0 Ci, then C = F0 + · · · + Fk.

We say S is supported on C. The cubical flip on S
consists of substituting, in every Ci, point ai with
Fi − {ai}.

If the generic position assumption does not hold,
lem. 3 does not hold, so we generalize this character-
ization using triangulations. Recall that the set C of
i-mixed cells corresponds by Cayley trick to a set Z of
simplices and a flip between two mixed subdivisions is
a flip between the two corresponding triangulations.
Genericallly, C has k + 1 cells and Z has k + 1 sim-
plices. The union of these simplices contains 2k + 2
points in a space of dimension k + d. If d = k, this
union of simplices is a circuit. In degenerate cases,
there may exist lower dimensional circuits and C may
have < k + 1 cells. As an illustration compare the
generic example (fig. 1), where C has 3 cells, with the
degenerate example (fig. 2), where C has only 2 cells.

Theorem 4 Let S be a mixed subdivision of A0 +
· · ·+Ak, and T the corresponding triangulation w.r.t.
Cayley’s trick. Then S has a cubical flip if there exists
a set C =

⋃k
i=0 Ci ⊆ S of i-mixed cells, as in lem. 3

and, additionally, the corresponding set Z of simplices
in T supports a bistellar flip. The cubical flip on S is
the bistellar flip of T supported on Z.

The mapping of cubical flips edges of N(R) is many
to one. When a cubical flip is supported on set C, we
say that the edge is of type C. Many cubical flips
may be supported on the same set C. The types of
all Resultant edges can be easily enumerated: they
are all possible resultant polytopes of subsets of Ai’s
with cardinality two. This enumeration also yields the
corresponding edge direction, i.e. the difference vector
between the two endpoints of N(R). More generally,
all faces of N(R) are Minkowski sums of Resultant
polytopes corresponding to subsystems of A0, . . . , Ak.
Conversely, every resultant polytope defined on sub-
sets of the Ai’s appears as Minkowski summand on
some face of N(R) [11].

Example 5 Let A0= {(0, 0), (1, 2), (4, 1)}, A1=
{(0, 1), (1, 0)}, A2= {(0, 0), (0, 1), (2, 0)}, which sat-
isfy the general position assumption. The Secondary
polytope of C(A1, A2, A3) is depicted in fig. 3 (left).
One can see the R-equivalent classes (dotted) as well
as the cubical flips (bold) which connect these classes.
All the other flips (non bold) are non-cubical flips.

The Resultant polytope can be seen as the poly-
tope with R-equivalent classes as vertices and cubical
flips as edges. To each Resultant vertex corresponds
one or more mixed subdivisions, and to each edge
one or more cubical flips. Here, Σ(C(A0, A1, A2) =
Ξ(A0, A1, A2) with 36 vertices; N(R) has 6 vertices,
and 11 edges corresponding to 9 different cubical flips
(fig. 3 right) which are all generic.

4 Secondary, Ξ, and Resultant Polytopes

Let Σ be the Secondary polytope of C(A0, A1, . . . ,
Ak), Ξ the polytope Ξ(A0, A1, . . . , Ak), and N(R) the
Resultant polytope. We offer a case study on these
polytopes, and focus on d = k.

When d = k = 1, every Minkowski cell is an edge,
i.e., a sum of an edge and a vertex, thus an i-mixed
cell. Then Σ = Ξ, and they are generally larger than
N(R). The number of vertices of N(R) is

(
m0+m1−2
m0−1

)
[4].

For arbitrary d, k, if all |Ai| ≤ 3, then Σ = Ξ.
To see this, recall that for any fine Minkowski cell
F =

∑k
i=1 Fi, it holds that

∑k
i=1 dim(Fi) = d. So, F

is not i-mixed iff for some Fi, we have dim(Fi) > 1.
Since |Ai| ≤ 3, by the pigeonhole principle, every non
i-mixed cell is a sum of k − 2 edges, two vertices and
a triangle. So the union of every pair of non i-mixed
cells can be written uniquely.

The smallest case that this does not hold is when
there exists i s.t. |Ai| = 4, and |Aj | ≤ 3, ∀j 6= i.

Example 6 An instance of the smallest case, for
d = k = 2, is A0= {(0, 0), (0, 1), (2, 0), (2, 1)}, A1=
{(0, 0), (1, 1), (2, 0)}, A2= {(0, 0), (0, 1)}, where Σ,Ξ,
and N(R) have, resp., 122, 98, and 8 vertices.

For arbitrary d, k, if for all i, |Ai| = 2, then
Σ = Ξ = N(R). This is the case where all flips are
cubical, every Minkowski cell is a sum of edges, called
zonotope, and the mixed subdivisions are zonotopal
tilings. The above discussion proves the following.

Lemma 7 If d = k = 1, or for all i, |Ai| ≤ 3, then
Σ = Ξ and they are at least as large as N(R). If for
all i, |Ai| = 2, then Σ = Ξ = N(R).

In addition to the case analysis above, we offer rele-
vant experimental results in [3]. In particular, we con-
sider some (highly) nontrivial examples corresponding
to the implicitization of a parametric sphere [2].

Example 8 The Ai’s are {(0, 0), (0, 2), (2, 0), (2, 2)},
{(0, 0), (1, 0), (0, 2), (2, 0), (1, 2), (2, 2)}, {(0, 0),
(0, 1), (0, 2)}, and Σ,Ξ and N(R), resp. have 76280,
32076 and 95 vertices.

The Ai’s are {(0, 0), (1, 0), (0, 2), (2, 0), (1, 2),
(1, 2)}, {(0, 0), (0, 2), (1, 1), (2, 0), (2, 2)}, {(0, 0),
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Fig. 3: [left] The Secondary polytope of example 5 with the R-equivalent classes (dotted) and the cubical flips (bold).
[right-up] The Resultant polytope of example 5. Each edge is a cubical flip; note that the same cubical flip may appear
in two different edges (9 flips in 11 edges). [right-botom] The input point sets and the cubical flips.

(2, 0)} and Σ,Ξ and N(R) have resp. 104148, 43018
and 21 vertices.

Our ultimate goal is an algorithm to enumerate all
vertices of N(R) without enumerating the entire Σ or
Ξ. To this end we need a unique representation of the
resultant vertices and some kind of flip based on the
cubical flip. At present, cubical flips do not suffice
because there are cases where it is not clear how to
obtain one vertex from another just with cubical flips
(see fig.3).
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