
Experimental Study of the Ehrhart
Interpolation Polytope

Vissarion Fisikopoulos1(B) and Zafeirakis Zafeirakopoulos2(B)

1 Oracle Corp., Neo Psychiko, Greece
vissarion.fisikopoulos@oracle.com

2 Institute of Information Technologies, Gebze Technical University, Gebze, Turkey
zafeirakopoulos@gtu.edu.tr

Abstract. In this paper we define a family of polytopes called Ehrhart
Interpolation Polytopes with respect to a given polytope and a parameter
corresponding to the dilation of the polytope. We experimentally study
the behavior of the number of lattice points in each member of the family,
looking for a member with a single lattice point. That single lattice point
is the h* vector of the given polytope. Our study is motivated by efficient
algorithms for lattice point enumeration.

1 Introduction

A fundamental problem in discrete and computational geometry is to efficiently
count or enumerate the lattice points of a polytope. Let P ⊆ R

d be a full
dimensional polytope and L a lattice in R

n. For any positive integer t, let tP =
{tp : p ∈ P} be the t-fold dilation of P and LP (t) = #(tP ∩L) be the counting
function for the number of lattice points contained in tP . Now, let P be a
lattice polytope, i.e., the vertices of P are lattice points. It is known, due to
Ehrhart [2], that there exist rational numbers a0, . . . , ad such that LP (t) =
adt

d + ad−1t
d−1 + · · · + a1t + a0. LP (t) is called the Ehrhart polynomial of P .

Note that the degree of LP (t) is equal to the dimension of polytope P . Instead
of considering LP (t) in the monomial basis, we can also view it as a polynomial
in the binomial basis

{(
t+d−i

d

)}
i=0,...,d

of polynomials of degree up to d. Then

from [6], we have that

LP (t) =
d∑

j=0

h∗
j

(
t + d − j

d

)
and h∗

j ∈ N (1)

where (h∗
0, h

∗
1, . . . , h

∗
d) is the h∗ vector of P .

The h∗ vector was the subject of many studies in the last decades [1,6,8]. A
lot of interesting results exist, but we will only mention the ones relevant for the
definition of the Ehrhart Interpolation Polytope (see Sect. 2).
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2 The Ehrhart Interpolation Polytope

In this section, we define the main object of our study, the Ehrhart Interpolation
Polytope. For this we will use the H∗ polyhedron. The main idea is that there
is a number of known linear inequalities for h∗ vectors, thus defining a polyhe-
dron. This polyhedron is contained in the non-negative orthant of Rd+1, since
h∗ vectors are non-negative.

Definition 1 (H∗ polyhedron). Given d ∈ N
∗ , let

H∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ R
d+1 :

x0 = 1 [2]
xi ≥ 0 ,0 ≤ i ≤ d [6]
xi ≥ x1 ,2 ≤ i < d [1]
xd + xd−1 + · · · + xd−i ≤ x0 + x1 + · · · + xi+1 ,0 ≤ i ≤ �d−1

2 � [1]
x0 + x1 + · · · + xi ≤ xd + xd−1 + · · · + xd−i ,0 ≤ i ≤ �d−1

2 � [1]
x1 + x2 + · · · + xi ≤ xd−1 + xd−2 + · · · + xd−i ,0 ≤ i ≤ �d−1

2 � [8]
xd−1 + xd−2 + · · · + xd−i ≤ x2 + x3 + · · · + xi+1 ,0 ≤ i ≤ �d−1

2 � [8]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Lemma 1. All h∗ vectors of d-dimensional polytopes with at least one interior
lattice point are lattice points in H∗.

For special cases of d it is possible to have more constraints that could yield
a more refined H∗.

The polyhedron H∗ depends only on the dimension d. If we are given a
polytope P ⊆ R

d, we can obtain upper bounds for the h∗ vector of P . In [7],
Stanley proves the following monotonicity theorem.

Theorem 1 ([7]). If P and Q are polytopes in R
n and P ⊆ Q, then h∗

P,i ≤ h∗
Q,i,

where h∗
P and h∗

Q are the h∗ vectors of P and Q respectively.

The above result could yield upper bounds for the h∗ vector of a given poly-
tope P by constructing the smallest hypercube C containing P . The h∗ vectors
of lattice hypercubes are easy to compute and this way we bound from above
all coordinates of the h∗ vector of P as h∗

P,i ≤ h∗
C,i for 0 ≤ i ≤ d. We use the

constraints coming from the bounding hypercube together with the one defined
by Eq. 1 to define the Ehrhart Interpolation Polytope.

Definition 2 (Ehrhart Interpolation Polytope). Given a polytope P ⊆ R
d

with at least one lattice point in its interior and t ∈ N
∗, we define the Ehrhart

Interpolation Polytope of P in dilation t

EP (t) =

⎧
⎪⎪⎨
⎪⎪⎩

x ∈ R
d+1 :

x ∈ H∗,∑d
i=0 xi

(
t+d−i

d

)
= LP (t) ,

xi ≤ h∗
C,i, 0 ≤ i ≤ d

⎫
⎪⎪⎬
⎪⎪⎭

(2)

where C ⊆ R
d is the smallest cube containing P .
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Fig. 1. The polytope P (left) and the associated EP (t) (right) from Example 1.

Note that EP (t) is indeed a bounded polyhedron, since it is contained in the
intersection of the positive orthant with a hyperplane whose normal vector is a
strictly positive vector (containing binomial coefficients). Moreover, observe that
the h∗ vector of P is contained in EP (t) for all t ∈ N

∗ by construction, for all
polytopes P containing at least one lattice point in their interior. Generically,
H∗ and EP (t) will have dimension d and d − 1 respectively.

Example 1. Let P ⊆ R
2 be the convex hull of the points (1, 1), (1, 4), (2, 5), (6, 2).

Then the Ehrhart Interpolation Polytope EP (t) is an 1-dimensional polytope
in R

3.
Figure 1 depicts P and EP (t) for t = 1, 2, . . . , 8. For t = 1, 2, . . . , 8, there are

12, 3, 6, 2, 3, 2, 3, 1 lattice points in each segment respectively. For t = 8 (purple),
EP (t) contains a single lattice point. This lattice point is the h∗ vector of the
polytope P . Note that for dilations greater than 8, it is possible to have more
than one lattice points, see Sect. 3.

The single lattice point in EP (8) is (1, 12, 9). The binomial basis for polyno-
mials in dimension 2 is

{
(t+1)(t+2)

2 , t(t+1)
2 , (t−1)t

2

}
. By evaluating Eq. 1 we get

the Ehrhart polynomial of P which is 11t2 + 3t + 1.

3 Experiments and Statistics

We experimentally study the number of lattice points of the EP (t) as a function
of the dilation t. The goal is to find a dilation t such that EP (t) contains a single
lattice point. Then, that lattice point is the h∗ vector of P . Our experiments
indicate that as we increase the dilation, after some point, the h∗ vector becomes
a vertex of the integer hull of the Ehrhart Interpolation Polytope. Moreover,
experimental evidence indicates that after a certain threshold, for some dilations
the integer hull of the Ehrhart Interpolation Polytope is 0-dimensional, i.e., a
single point. This can already be observed in the low dimensions; see Example 1.



Experimental Study of the Ehrhart Interpolation Polytope 323

Fig. 2. The number of lattice points in the Ehrhart Interpolation Polytope for dilations
600–800 (left) and dilations 1200–1227 (right). Dilation 1227 contains one lattice point.

Fig. 3. Number of lattice points in the Ehrhart Interpolation Polytope for the per-
mutahedron in dimension 4 (left) and for some solids (right) for dilations 5 to 30.

In this section we present some statistics about the number of lattice points
in the Ehrhart Interpolation Polytope.

For our study we concentrate on cross polytopes, permutahedra, random
simplices, and zonotopes in dimensions 3, 4, and 5, as well as Platonic solids that
are lattice polytopes. For the exploration presented here we used the computer
algebra system Sage [5].

We first focus on the permutahedron in dimension 5, to show some observa-
tions that hold for other families of polytopes as well. In Fig. 2, we see that the
number of lattice points in successive dilations exhibits a periodic behavior. The
lowest point during a period is related to the dimension of the polytope. Note
that the permutahedron in dimension d is a d − 1-dimensional polytope.

In Fig. 3, we can see that the Ehrhart Interpolation Polytope of the permu-
tahedron in dimension 4 contains a single lattice point in dilation 30 on the
left. On the right, we see the behavior of some Platonic Solids that are lattice
polytopes.

Regarding timings, all above experiments have been performed on a personal
computer in order of seconds.
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4 Conclusion

The purpose of this short paper is to start a discussion on the study of Ehrhart
Interpolation Polytopes. Our preliminary results indicate that it should be inter-
esting to study more their combinatorial properties and provide rigorous exper-
imental or analytical results.

Our original motivation for the definition of Ehrhart Interpolation Polytope
was the computation of Ehrhart polynomials, using good approximations of the
volume in large dilates of the polytope. Matthias Köppe [4] suggested to use Inte-
ger Linear Programming for finding the h∗ vector in the Ehrhart Interpolation
Polytope.

Interestingly, finding the Ehrhart polynomial reduces to a non-convex opti-
mization problem, namely finding the minimum of the function counting the
number of lattice points of a polytope varying dilation t. Finally, practical vol-
ume approximation algorithms [3] can be applied to yield bounds on the number
of lattice points that could be used to refine EP (t).
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2016-A-27 of Gebze Technical University.
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