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The computation of determinants or their signs is the core procedure in many important 
geometric algorithms, such as convex hull, volume and point location. As the dimension 
of the computation space grows, a higher percentage of the total computation time is 
consumed by these computations. In this paper we study the sequences of determinants 
that appear in geometric algorithms. The computation of a single determinant is accelerated 
by using the information from the previous computations in that sequence.
We propose two dynamic determinant algorithms with quadratic arithmetic complexity 
when employed in convex hull and volume computations, and with linear arithmetic 
complexity when used in point location problems. We implement the proposed algorithms 
and perform an extensive experimental analysis. On one hand, our analysis serves as 
a performance study of state-of-the-art determinant algorithms and implementations. 
On the other hand, we demonstrate the supremacy of our methods over state-of-the-
art implementations of determinant and geometric algorithms. Our experimental results 
include a 20 and 78 times speed-up in volume and point location computations in 
dimension 6 and 11 respectively.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Computing the sign of a determinant, or in other words evaluating a determinant predicate, is in the core of many 
important geometric algorithms. For example, convex hull algorithms use orientation predicates, and Delaunay triangulation 
algorithms involve in-sphere predicates. Furthermore, the computation of the value of a determinant, or in other words a 
determinant construction, is also important in some geometric algorithms. For example, the exact volume computation of 
a convex polytope using either triangulation or sign decomposition method relies on the computation of the volume of 
simplices, which reduces to computing the value of a determinant.

In other words predicates encapsulate decisions in contrast to constructions that involve computation of new numerical 
values. In general dimension d, the orientation predicate of d +1 points is the sign of the determinant of a matrix containing 
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the homogeneous coordinates of the points as columns. On the other hand, the volume of a simplex is the value of the 
determinant of a matrix containing the homogeneous coordinates of the d + 1 vertices of the simplex. In practice, as the 
dimension grows, a higher percentage of the computation time is consumed by these core procedures.

In this paper, we study effective algorithms and implementations for the computation of the determinant predicates and 
constructions that appear in geometric computations. The model we follow is the exact computation paradigm presented 
in [1] and advocated by the Computation Geometry Algorithms Library (CGAL) [2], a state-of-the-art library for geometric 
computations. Note that in geometric algorithms the naive use of floating point arithmetic may lead to incorrect results [3]. 
There are two main scenarios regarding exactness. The first provides exact predicates but not necessarily exact constructions 
while the second provides both exact predicates and exact constructions. In this paper we study the second scenario. We 
give a particular emphasis on exact division and division-free algorithms. Avoiding divisions is crucial when working on a 
ring that is not a field, e.g., integers or polynomials.

The main idea of our approach is to study the sequence of computations of determinants or signs of determinants that 
appear in geometric algorithms. A single computation can be accelerated by using the information from the previous com-
putations in this sequence. The essential case is the sequence of computations of the orientation predicates that appear 
in convex hull algorithms. The convex hull problem is probably the most fundamental problem in discrete and computa-
tional geometry. In fact, the problems of regular, Delaunay triangulations and Voronoi diagrams reduce to it by computing a 
convex hull in one dimension higher [4]. Additionally, in the course of an incremental convex hull algorithm like Beneath-
and-Beyond [5] we compute the volume of the polytope as a by-product of the computation. See [6] for a survey on volume 
computation and relevant implementations.

Since we will study in practice the performance of geometric and algebraic algorithms, it is important to classify the test 
cases. Especially, one of the parameters we will use is the dimension. We will refer throughout the paper to dimensions d <
5 as low, to dimensions 5 ≤ d ≤ 25 as medium and to dimensions d > 25 as high, unless otherwise stated. In our experiments, 
we focus on medium dimensions for determinant computations and “small to medium” for geometric algorithms, i.e., 6 to 
11 depending on the application.

1.1. Previous work

There is a variety of algorithms and implementations for computing the determinant of a d × d matrix. Let us denote 
by O (dω) the complexity of matrix multiplication. First, we consider the case where the matrix has values from a field. For 
ω > 2, an algorithm for matrix multiplication imply an algorithm for determinant computation with the same ω [7]. The 
best current ω is 2.3728639 [8].

An important class of determinant computation algorithms are the algorithms which use exact divisions, i.e., divisions 
known to have remainder zero. An application of them is the computation of the determinant of a matrix with integer 
entries using only integer arithmetic. A typical example of this is Bareiss algorithm [9].

Division-free algorithms form another category. They use no divisions at all, e.g., when matrix coefficients are elements 
of an abstract commutative ring. The best current ω in this category is 2.697263 [10]. Here, it is worth mentioning a family 
of determinant algorithms that use combinatorial approaches. They were introduced by Mahajan and Vinay [11], and are 
based on clow (closed ordered walk) sequences. Several similar methods with complexity O (d4) are surveyed by Rote [12]. 
Based on the idea of clow sequences Bird introduced a simpler algorithm that uses matrix operations [13]. Its complexity 
is O (dM(d)), where M(d) is the complexity of matrix multiplication. Urbańska conceived a method that uses fast matrix 
multiplication [14] to obtain a complexity O (d3.03) [15]. However, in practice when d is small, Bird’s algorithm behaves 
better than other division-free algorithms, as it will be discussed in Section 4.3.

Determinants of matrices over a ring arise in combinatorial problems [16], in algorithms for lattice polyhedra [17] and 
secondary polytopes [18] or in computational algebraic geometry problems [19]. A special case of the latter is the compu-
tation of resultant polytopes that have applications in polynomial system solving [20] and geometric modeling [21].

Good asymptotic complexity does not imply good behavior in practice for low and medium dimensions. For instance,
LinBox [22], which implements algorithms with state-of-the-art asymptotic complexity, introduces a significant overhead 
in low and medium dimensions, and seems most suitable in high dimensions (see Section 4.3 for more details).

Eigen [23] implements LU decomposition, of complexity O (d3), and seems to be suitable for low and medium dimen-
sions. Eigen was designed with floating-point computations in mind, where it uses hardware floating-point vectors to 
attain great speed.

In addition, there exists a variety of algorithms for determinant sign computation [24–28]. Kaltofen and Villard [29]
present a complete survey on the matter. One tool commonly used for sign computations is filtering: arithmetic operations 
are done using fixed-precision floating-point interval arithmetic, switching to exact arithmetic only when the sign is un-
known. Filtered computations are widely used because they provide a simple approach to avoid performing exact operations 
in many cases. While filtered computation performs well in low dimensions, there is no experimental study on the efficiency 
of current methods in medium dimensions (see Section 4.6).

The problem of computing sequences of determinants has also been studied. TOPCOM [18] is the reference software for 
enumerating all regular triangulations of a set of points in general dimension. It efficiently pre-computes all orientation 
determinants that will be needed in the computation and stores their signs. Emiris et al. [30] study a similar problem in the 
context of computational algebraic geometry. In particular, the computation of several regular triangulations for different 
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lifting functions. The computation of orientation predicates is accelerated by maintaining a hash table with the computed 
minors of the determinants. These minors appear many times in the computation. However, this method does not provide 
considerable acceleration when applied to the case of a single convex hull computation.

Our approach utilizes the Sherman–Morrison formulas [31,32]. They relate the inverse of a matrix after a small-rank 
perturbation to the inverse of the original matrix. Other applications of these formulas include solving the dynamic transitive 
closure problem in graphs [33] and studying the effect of new links on Google Page Rank [34].

1.2. Contribution

We design algorithms that perform dynamic determinant updates and achieve quadratic complexity for the determinants 
involved in incremental convex hull or volume computation algorithms and linear complexity for determinants involved in 
point location algorithms. Interestingly, we propose a variant of these algorithms that can perform computations over the 
integers. Our main technical tool is Sherman–Morrison formulas. As far as we know this is the first application of these 
formulas to geometric algorithms.

We implement the proposed algorithms along with division-free determinant algorithms from the literature. We perform 
an extensive experimental analysis of the current state-of-the-art packages for exact determinant computations along with 
our implementations. Without taking the dynamic determinant algorithms into account, our experiments present a result of 
independent interest: they serve as a survey of state-of-the-art determinant algorithms and implementations. In the division-
free case, with matrices containing very large integer values, we show that the simple and not-widely used algorithm due 
to Bird [13] outperforms state-of-the-art implementations in dimensions 6 < d < 10, while providing a very competitive 
performance for higher dimensions. Dynamic algorithms start outperform all the other tested determinant implementations 
in dimension 6 when the input has small bit-size. For larger bit-size, the dynamic algorithms become competitive in larger 
dimensions (d > 23 in our tests).

We adapt our implementations to work with geometric algorithms, thus providing exact predicates and constructions. 
A natural geometric context to test our method is exact volume computation, where it yields very competitive implemen-
tations. For instance, we obtain an up to 20 times speed-up comparing with state-of-the-art packages in dimension 6. We 
also provide experimental results showing that our method improves the running time of convex hull and point location 
implementations with respect to other exact implementations. Another interesting feature of our method is that it takes ad-
vantage of multiple precision integer, as opposed to rational, arithmetic when the input coordinates are integral (e.g. lattice 
polytopes).

Overview of the paper The paper is organized as follows. Section 2 introduces the dynamic determinant algorithms and the 
following section presents their application to geometric algorithms. Section 4 discusses the implementation, experiments, 
and comparison with other software. We end up with conclusions and future work.

A preliminary version of the results of this paper appeared [35]. In this final version, we include new results on volume 
computations and experiments on real practical scenarios. We also present more experimental results on determinant and 
convex hull computations and discuss issues as filtering and memory consumption. Overall, we provide an improved and 
more detailed presentation of our method.

2. Dynamic determinant computations

In the dynamic determinant problem, a d ×d matrix A is given. Allowing some preprocessing, we should be able to handle 
updates of elements of A and return the current value of the determinant. We consider here only non-singular updates, 
that is, updates that do not make A singular. This assumption is sufficient for our method as we explain at the end of 
Section 3.2.

The Sherman–Morrison formula [31,32] states that

(
A + w v T

)−1 = A−1 − (A−1 w)(v T A−1)

1 + v T A−1 w
, (1)

where A a d × d matrix and v, w vectors of dimension d. Let A′ be the matrix resulting from replacing the i-th column of 
A by a vector u. Also let (A)i denote the i-th column of A, and ei the vector with 1 in its i-th place and 0 everywhere else. 
An i-th column update of A is performed by substituting v = ei and w = u − (A)i in Equation (1). Then, we can write A′ −1

as follows:

A′ −1 =
(

A + (u − (A)i)eT
i

)−1 = A−1 −
(

A−1(u − (A)i)
)
(eT

i A−1)

1 + eT
i A−1(u − (A)i)

, (2)

where eT
i is simply selecting row i. If A−1 is computed, we compute A′ −1 using Equation (2). The computation is performed 

as follows:
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h1 = A−1(u − (A)i) (3)

h2 = h1/(1 + (h1)
i) (4)

H3 = h2 (A−1)i (5)

A′ −1 = A−1 − H3 (6)

where (A)i, (h1)
i denote the i-th row of A and the i-th element h1 respectively. The intermediate results are the 

d-dimensional vectors h1, h2 and the d × d matrix H3. Hence, the equations (3), (4), (5), (6) are computed in d2 + d, d +
O (1), d2, d2 arithmetic operations respectively and thus 3d2 + 2d + O (1) in total.

The matrix determinant lemma [36] states that

det
(

A + w v T
)

=
(

1 + v T A−1 w
)

det (A) (7)

which yields the following equation

det
(

A′) = det
(

A + (u − (A)i)eT
i

)
=

(
1 + eT

i A−1(u − (A)i)
)

det (A) . (8)

Using Equation (8) we compute det
(

A′) in 2d + O (1) arithmetic operations, if det (A) is known. Equations (2) and (8) lead 
to the following result.

Proposition 1. (See [31].) The dynamic determinant problem can be solved using O (dω) arithmetic operations for preprocessing and 
O (d2) for non-singular one column updates. The preprocessing consists in the computation of A−1 and det (A).

Then we show how this computation can be performed over a ring. To this end, we use the adjoint of A, denoted by 
Aadj, rather than the inverse. It holds that Aadj = det(A)A−1, thus we obtain the following two equations.

A′ adj = 1

det(A)

(
Aadj det(A′) −

(
Aadj(u − (A)i)

) (
eT

i Aadj
))

(9)

det(A′) = det(A) + eT
i Aadj(u − (A)i) (10)

The only division in Equation (9) is known to be exact, i.e., its remainder is zero. If the computation follows the order of 
operations as determined by the parenthesis in Equations (9), (10) then the computation can be performed in 5d2 +d + O (1)

arithmetic operations for Equation (9) and in 2d + O (1) for Equation (10). In the sequel, we will call dyn_inv the dynamic 
determinant algorithm that uses Equations (2) and (8), and dyn_adj the one that uses Equations (9) and (10).

3. Geometric algorithms

We introduce in this section our methods for optimizing the computation of sequences of determinants that appear in 
geometric algorithms. First, we utilize dynamic determinants, as described in the previous section, in incremental convex 
hull algorithm; they form one of the basic classes of convex hull algorithms. Then, we show how this solution can be 
extended to other geometric algorithms such as point locations in triangulations and volume computations.

3.1. Preliminaries

Let us start with some basic definitions from discrete geometry. Let A ⊂ R
d be a set of n points. We define the convex hull

of a pointset A, denoted by conv(A), as the smallest convex set containing A. A hyperplane supports conv(A) if conv(A)

is entirely contained in one of the two closed half-spaces determined by the hyperplane and has at least one point on the 
hyperplane. A face of conv(A) is the intersection of conv(A) with a supporting hyperplane that does not contain conv(A). 
Faces of dimension 0 and d − 1 are called vertices and facets respectively. We call a face f of conv(A) visible from a ∈ R

d

if there is a supporting hyperplane that contains f such that conv(A) is contained in one of the two closed half-spaces 
determined by the hyperplane and a in the other. A k-simplex of A is the convex hull of an affinely independent subset S
of A, where dim(conv(S)) = k. A triangulation of A is a collection of simplices of A, called the cells of the triangulation, 
such that the union of the simplices equals conv(A) and every pair of simplices intersect at a common face or have an 
empty intersection. We define the orientation matrix AC of a set C of points {a1 . . .ad+1} ⊂ R

d to be the (d + 1) × (d + 1)

matrix such that for every ai , the column i of AC contains �ai ’s coordinates as entries, where �ai is the homogeneous vector 
(ai, 1).
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Fig. 1. The course of an incremental convex hull algorithm in 3 dimensions.

Algorithm 1: Incremental convex hull (A).

Input : pointset A ⊂R
d

Output : convex hull of A
sort A by increasing lexicographic order of coordinates, i.e., A = {a1, . . . , an};
T ← {a1, . . . , ad+1};
Q ← facets of conv(a1, . . . , ad+1);

foreach a ∈ {ad+2, . . . , an} do
Q ′ ← Q ;

foreach F ∈ Q do
C ← the unique d-face s.t. C ∈ T and F ∈ C ;
u ← the unique vertex s.t. u ∈ C and u /∈ F ;
C ′ ← F ∪ {a};
// det(AC ) and Aadj were computed in a previous step
det(AC ′ ) ← (det(AC ) after updating u with a using Equations (9), (10));

if det(AC ′ ) det(AC ) < 0 then
T ← T ∪ {d-face of conv(C ′)};
Q ′ ← Q ′ 
 {(d − 1)-faces of C ′}; // symmetric difference

end
end
Q ← Q ′;

end

return Q ;

3.2. Incremental convex hull

For simplicity, we assume general position of A and present our method for the Beneath-and-Beyond (BB) algorithm [5]. 
However, our method can be extended to handle degenerate inputs as in [37, §8.4], and can be applied to more efficient 
incremental convex hull algorithms (e.g., [38]) by utilizing the dynamic determinant computations to answer the predicates 
appearing in point location (Corollary 2). A clarification of this claim is our implementation in Section 4 which first handles 
degenerate inputs in practice and second is faster compared to other software. In what follows, we use the dynamic deter-
minant algorithm dyn_adj, which can be replaced by dyn_inv yielding a variant of the presented convex hull algorithm. This 
choice is supported by our experiments where we show that dyn_adj is faster than dyn_inv in all the tested dimensions.

The BB algorithm is initialized by computing a d-simplex of A. At every subsequent step, a new point from A is inserted, 
while keeping a triangulated convex hull of the inserted points. Let t be the number of cells of this triangulation. Assume 
that, at some step, a new point a ∈ A is inserted and T is the triangulation of the convex hull of the points of A inserted 
up to now. To determine if a facet F is visible from a, an orientation predicate involving a and the vertices of F has to be 
computed (Fig. 1). That is, we have to compute the sign of the determinant of the matrix AC , where C is the set of vertices 
of F union with a. If we know the adjoint and the determinant of the orientation matrix of a cell of T that contains F , 
this can be done by applying Equation (10). If F is on the boundary, this cell is unique (e.g., (F , u) in Fig. 1) otherwise we 
arbitrarily select one of the two cells that contain F .

Algorithm 1, as initialization, computes from scratch the adjoint matrix and the determinant of the orientation matrix AC , 
where C contains the vertices of the initial d-simplex. At every incremental step, it first computes the orientation predicates 
using the adjoint matrices and determinants computed in previous steps using Equation (10). Second, it computes the 
adjoint and determinant of the orientation matrices of the new cells using Equation (9). By Proposition 1, this method leads 
to the following result.



6 V. Fisikopoulos, L. Peñaranda / Computational Geometry 54 (2016) 1–16
Proposition 2. Given a d-dimensional pointset the first orientation predicate of incremental convex hull algorithms is computed in 
O (dω) time, and all the others in O (d2) time in total O (d2t) space, where t is the number of cells of the constructed triangulation.

Essentially, this result improves the computational complexity of the predicates involved in incremental convex hull 
algorithms from O (dω) to O (d2) by using more space and dynamic determinant updates. Recall that O (dω) is the current 
best complexity (Section 1). To analyze the complexity of Algorithm 1, we bound the number of facets of Q in every step 
of the outer loop of Algorithm 1 with the number of (d − 1)-faces of the constructed triangulation of conv(A), which is 
bounded by (d + 1)t . Thus, using Lemma 2, we have the following complexity bound for Algorithm 1, where we assume 
that n � d to hide the preprocessing complexity O (dω).

The method of dynamic determinants increases the space complexity of BB from O (nd) numbers and O (td) references to 
O (td2) numbers and O (td) references. The numbers stored by the two methods are different. The original method stores 
only point coefficients while ours stores additionally determinants and the inverse and adjoint matrices. The bit-sizes of 
those numbers are different. The O (nd) point coefficients are part of the input. Let τ be a bound on their bit-sizes. From 
Hadamard’s inequality [39] the value of the determinant of a matrix A is bounded by

|det(A)| ≤ 2τddd/2.

It follows that the bit-size of the computed determinants is O (d(τ + log d), which becomes O (dτ ) under the standard 
assumption τ � d. Since the absolute values of the elements of the adjoint and inverse of A are bounded by the determinant 
of submatrices of A, the above bound also holds for the bit-size of the elements of the adjoint and inverse matrices.

Corollary 1. Given n d-dimensional points whose coefficients bit-size is bounded by τ , the complexity of BB algorithm is O (n logn +
d3nt), where n � d, τ � d and t is the number of cells of the constructed triangulation. The consumed space is O (td2) numbers of 
bit-size at most O (dτ ) and O (td) references.

Note that the complexity of BB, without using the method of dynamic determinants, is bounded by O (n log n + dω+1nt). 
Recall that t is bounded by O (n�d/2) [40, §8.4], which shows that Algorithm 1, and convex hull algorithms in general, do not 
have polynomial complexity in n and d. The schematic description of Algorithm 1 and its coarse analysis is good enough for 
our purpose: to elucidate the application of dynamic determinants to incremental convex hull computation and to quantify 
the improvements using this method. See Section 4 for a practical approach to incremental convex hull algorithms using 
dynamic determinant computations.

In Section 2 we have addressed only non-singular updates. Here we show that this will not limit our method to handle 
degenerate cases. In a degenerate case, the determinant of an orientation matrix will be zero if the points in the orientation 
test span a space of dimension less than d. However, in this case, we do not have to update the adjoint or the determinant 
of the orientation matrix (which would be equivalent to a singular update operation), since no new cell is going to be 
created.

3.3. Point location and volume computation

The above results can be used to improve the efficiency of geometric algorithms that use convex hull computations. One 
way of computing Delaunay triangulations in Rd and their dual Voronoi diagrams is to compute the convex hull of the points 
lifted on the paraboloid in Rd+1. For generic liftings, the above construction leads to regular triangulations.

Another important geometric problem where our method could be applied is exact volume computation, since one of the 
two major classes of volume computation algorithms is based on triangulation methods [6]. To elucidate this, observe that 
in Algorithm 1 we can compute the volume of the polytope by summing up the volumes of all full dimensional simplices 
in the resulting triangulation. Indeed, the volume of a simplex is the absolute value of the determinant of its orientation 
matrix. The difference of an incremental convex hull and a volume computation algorithm using a triangulation method is 
that the former needs to evaluate determinant predicates (i.e., know only the sign of determinants), while the latter needs 
determinant constructions (i.e., compute the value of determinants).

As mentioned above, more efficient incremental convex hull algorithms (e.g., the work of Clarkson and Shor [38]) do 
not sort the input points, they use instead point location methods to find the position of the point that is going to be 
inserted into the convex hull. It is straightforward to apply our scheme in orientation predicates appearing in point location
algorithms, that perform orientation tests with respect to the facets of the triangulation. The orientation predicates queried 
by a point location algorithm can be computed using Equation (10), if the adjoint and determinant of the orientation 
matrices of the cells of the triangulation have been precomputed. That yields the following result.

Corollary 2. Given a triangulation of a d-dimensional pointset computed by an incremental convex hull algorithm like Algorithm 1, the 
orientation predicates involved in point location algorithms that perform orientation tests with respect to the facets of the triangulation 
can be computed in O (d) arithmetic operations, using O (d2t) numbers of maximum bit-size O (dτ ) as space, where t is the number of 
cells of the triangulation and τ bounds the bit-sizes of the numbers, as in Corollary 1.
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4. Implementation and experimental analysis

4.1. Software design

We implemented in C++ the methodology described above, which we call hashed dynamic determinants. The scheme con-
sists of efficient implementations of algorithms dyn_inv and dyn_adj (Section 2) and a hash table, which stores intermediate 
results such as matrices and determinants. Note that since our implementation computes values of determinants and not 
only their sign it cannot take advantage of filtering techniques (Section 4.6).

The design of our implementation is modular. It can be used by an algebraic software, providing dynamic determinant 
algorithm implementations. Moreover it can be used by a geometric software providing exact geometric predicates and 
constructions (e.g., orientation and volume). Here we focus on geometric software that implements incremental convex 
hull algorithms, which essentially compute a triangulation. Our implementation is independent of the data-structures used 
by the geometric software. The use of the hash table as an additional data-structure is a way to provide the user with 
an interface to the new determinant computation without modifying its own data structure. In practice, hash tables have 
constant insertion and retrieval times, and thus our approach does not introduce a significant overhead in computing time 
while remaining modular.

The hashing scheme works as follows. Assume that the input points are indexed as {a1, . . . , an}. We use as hash keys
the tuples of indices of the (d − 1)-faces of the triangulation. Each (d − 1)-face is mapped to one of the two cells (i.e., 
d-faces) of the triangulation that it belongs to. The selection between the two cells is arbitrary and does not affect the 
efficiency of the method. For every cell we also store the adjoint and the determinant of the matrix that corresponds to its 
vertices’ coordinates. In the course of geometric algorithms a given point b should be tested for orientation with respect to 
a hyperplane defined by points that are locally indexed as a1, . . . , ad . Querying the hash table for the tuple (a1, . . . , ad) we 
obtain the adjoint and the determinant of the matrix with entries the coordinates of a1, . . . , ad and one more point c. Thus, 
the requested orientation determinant is computed by updating c with b applying Equations (9) and (10). The following 
2-dimensional example illustrates our approach.

Example 1. Let A = {a1 = (0, 1), a2 = (1, 2), a3 = (2, 1), a4 = (1, 0), a5 = (2, 2)} where every point ai has an index i from 1
to 5. Assume we are in some step of an incremental convex hull or point location algorithm and let T = {{1, 2, 4}, {2, 3, 4}}
be the 2-dimensional triangulation of conv(A) computed so far. The cells of T are indexed using the indices of the points 
in A. For each cell, the hash table will store as keys the set of indices of the 2-faces of the cell, e.g., for the cells {1, 2, 4} the 
keys are {{1, 2}, {2, 4}, {1, 4}} mapping to the adjoint and the determinant of the matrix constructed by the points a1, a2, a4. 
Similarly, {{2, 3}, {3, 4}, {2, 4}} are mapped to the adjoint matrix and determinant of a2, a3, a4. To insert a5 in T one should 
compute the orientation determinant of a2, a3, a5 to determine whether the facet {2, 3} is visible from a5 and hence should 
be connected to construct a new cell {2, 3, 5}. Similar computations are performed for the other facets. By querying the 
hash table for {2, 3} the adjoint and the determinant of the matrix of a2, a3, a4 are returned. Then, we perform an update 
of the column corresponding to point a4, replacing it by a5 and apply Equations (9) and (10) to compute the adjoint and 
the determinant of the new cell. Finally, the two new keys {2, 5}, {3, 5} are added to the hash table and are mapped to the 
new cell {2, 3, 5}.

The hash table has been implemented using the Boost libraries [41]. To reduce memory consumption and speed-up 
look-up time, we sort the lists of indices that form the hash keys. We use the GNU Multiple Precision arithmetic library
(GMP), the current standard for multiple-precision arithmetic, which provides integer and rational types mpz_t and mpq_t, 
respectively.

The geometric software we interface with our implementation is the CGAL package Triangulation [42,43], which 
implements an incremental convex hull algorithm. The difference between this implementation and Algorithm 1 of Sec-
tion 3 is that Triangulation does not sort the points along one coordinate but along a d-dimensional Hilbert curve 
and performs a fast point location at every insertion. Thus, we can take advantage of our scheme in two places: (a) in the 
orientation predicates appearing in the point location procedure, and (b) in the ones that appear in the construction of the 
convex hull.

We call hdch the modification of Triangulation with hashed dynamic determinants. On the technical part, we 
provide a modification of the CGAL Kernel were the call to the determinant is replaced by a functor which implements the 
dynamic determinant formulas and has access to the hash table. The hash table is completely hidden from the interface. 
We use Eigen for initial determinant and adjoint or inverse matrix computation and Laplace determinant algorithm for 
dimensions lower than 6.

4.2. Experimental setup

All experiments ran on an Intel Core i5-2400 3.1 GHz, with 6 MB L2 cache and 8 GB RAM, running 64-bit Debian 
GNU/Linux. We divide our tests in four scenarios, according to the number type involved in computations:

a. rationals where the bit-size of both numerator and denominator is 10 000,
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Fig. 2. Determinant experiments, inputs of scenario (a). Each timing (in milliseconds) corresponds to the average of computing 10 000 determinants.

Fig. 3. Determinant experiments, inputs of scenario (b). Each timing (in milliseconds) corresponds to the average of computing 10 000 (for d < 7) or 1000 
(for d ≥ 7) determinants.

b. rationals converted from doubles, that is, numbers of the form m × 2p , where m and p are integers of bit-size 53 and 
11 respectively,

c. integers with bit-size 10 000, and
d. integers with bit-size 32.

However, it is rare to find in practice input coefficients of scenarios (a) and (c). Inputs are usually given as 32 or 64-bit 
numbers. These inputs correspond to the coefficients of scenario (b). Scenario (d) is also very important, since points with 
integer coefficients are encountered in many combinatorial applications (Section 1).

4.3. Determinant computation experiments

We compare state-of-the-art software for exact computation of the determinant of a d × d matrix in the four coefficient 
scenarios described above. When coefficients are integers, we can use integer exact division algorithms, which are faster 
than quotient-remainder division algorithms. In this case, division-free algorithms take advantage of using the number 
type mpz_t while the others are using mpq_t. The input matrices are constructed starting from a random d × d matrix, 
replacing a randomly selected column with a random d vector. We present experimental results of the four input scenarios 
in Figs. 2–5. We tested a fifth coefficient scenario (rationals of bit-size 32), but do not show results here because timings 
are quite proportional to those show in Fig. 2. We stop testing an implementation when it is slow and far from being 
the fastest (denoted by absence of dots in the Figures). On one hand, without considering the dynamic algorithms, the 
experiments show the most efficient determinant algorithm implementation in the different scenarios described. This is a 
result of independent interest, and shows the efficiency of division-free algorithms in some settings.

First, we consider LU decomposition, the current standard in determinant implementations. We test Eigen [23] which 
shown to be the fastest in scenarios (a) and (b), starting from dimension 5 and 6 respectively, as well as in scenario (d) in 
dimensions between 9 to 12.
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Fig. 4. Determinant experiments, inputs of scenario (c). Times in milliseconds, averaged over 1000 tests for d < 9 and 100 tests for d ≥ 9.

Fig. 5. Determinant experiments, inputs of scenario (d). Times in milliseconds, averaged over 10 000 tests.

Second, we consider determinant algorithms implemented in LinBox [22]. LinBox implements state-of-the-art algo-
rithms with the best known asymptotic complexity bounds. However, their implementation usually has a big computational 
overhead and LinBox shows the best results only when working in high dimensions (the results of the tests of this sec-
tion corroborate this claim). LinBox provides a myriad of algorithms for computing determinants: many known dense and 
sparse elimination methods, the block Wiedemann algorithm [44] and an algorithm using a hybrid method mixing Chinese 
remaindering and last invariant factor [45]. We tested them and used for our tests the faster algorithm for our scenar-
ios (c) and (d),1 the hybrid elimination algorithm (which is also the default in LinBox). LinBox is never the best, due to 
the fact that it focuses on high dimensions. For instance, observe Figs. 4 and 5. In the former, LinBox is competitive only in 
high dimensions (i.e. > 15), but tends to be the most efficient in dimensions larger than 25, for which we didn’t perform 
experiments. In the latter, LinBox is at least two times slower than Maple until dimension 10. In this case, for larger 
dimensions, LinBox switches the internal algorithm it uses and, while the former relation still holds, timings get much 
slower than Maple.

We consider Maple 14 LinearAlgebra[Determinant]. Maple implementation chooses between Bareiss algo-
rithm [9], Gaussian elimination [46, §2.2] and Berkowitz algorithm [47], based on the properties of the underlying algebraic 
structure. Note that, for scenario (c), we experimentally check that it is more efficient to force Maple to use Bareiss al-
gorithm. Experimental results of that case are presented in Fig. 4. Maple is the fastest only in scenario (d), starting from 
dimension 13.

To test the behavior of the class of division-free combinatorial algorithms, we choose to implement Bird’s algorithm [13]
despite of the existence of combinatorial algorithms with better asymptotic complexity. Those algorithms are using fast ma-
trix multiplication, which carries big constants in the complexity [48,49]. As reported in [50] implementations of fast matrix 
multiplications are more efficient for matrices with dimensions bigger than 100. On the other hand, Bird’s algorithm does 
not rely on a particular matrix multiplication algorithm; its complexity is expressed as a function of the complexity of the 

1 For technical reasons, we only tested LinBox with integer matrices; however, our results can be readily generalized to the rational case.
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matrix multiplication algorithm used. We choose to implement Bird’s algorithm using schoolbook matrix multiplication [46, 
§3.1]: since Bird’s algorithm only operates with some rows of upper-triangular matrices, few scalar operations are actually 
done (only 1

4 d4 + O (d3) scalar multiplications, and the same number of additions, are needed, see Appendix A). Interest-
ingly, naive matrix multiplication makes Bird’s algorithm very competitive in small to medium dimensions. It is faster, in 
cases, than algorithms using fast matrix multiplication and faster than common decomposition methods when working with 
big integers. In particular, it is the fastest in scenario (c), starting in dimensions 7 to 9, and in scenario (d), in dimensions 7
and 8.

The classic Laplace expansion [46, §4.2] which falls in the category of division-free algorithms is implemented and 
proved to be the most efficient until dimension 4, 5, 6, 5 for scenario (a)–(d) respectively. It has exponential complexity, 
but it behaves very well in low dimensions because of the small constant of its complexity and the fact that it performs no 
divisions.

We consider our implementations of dyn_inv and dyn_adj. In the initialization step of these algorithms, we compute the 
inverse, the adjoint and the determinant of the initial matrices using Gaussian elimination. This step affects only infinites-
imally the total running time, because it is performed only once, and thus we did not search for optimal implementations 
of these algorithms. Experiments show that dyn_adj defeats the other algorithms in the most common scenarios (b), (d) 
starting in dimension 6. This happens mainly because of its better asymptotic complexity. In scenario (c), dyn_adj beats the 
most efficient non-dynamic methods (which are the division-free methods) only in high dimensions. It outperforms Bird 
only in dimension 16, while it is faster than Bareiss only in dimension 24. It worth mentioning that dyn_adj performs al-
ways better than dyn_inv, despite its worse arithmetic complexity. This is somehow because we are working with multiple 
precision arithmetic, on which the cost of arithmetic operations is a function on the size of the operands. Since the sizes 
of the coefficients of the adjoint matrix are bounded, the sizes of the operands of the arithmetic operations in dyn_adj are 
also bounded, which is not the case for dyn_inv.

Finally, we report results of inexact computation for scenarios (b) and (d), that is, Eigen using double-precision floating-
point arithmetic (denoted by inexact in Figs. 3 and 5). Though largely faster than the timings of exact computations, the 
correct value of the determinant is not computed. These experiments provide an insight of the timings one would obtain 
using filtered computations, in the ideal case that no exact computation needs to be done. See Section 4.6 for a discussion 
on filtering.

4.4. Geometric computation experiments

We perform an experimental analysis on the behavior of the application of dynamic determinants in geometric compu-
tation. Our main focus is to provide exact determinant constructions to volume computation. Since convex hull computation 
is closely connected to volume computation (cf. Section 3) we study also convex hull algorithms. We experiment with four 
state-of-the-art convex hull packages. Two of them implement incremental convex hull algorithms: Triangulation [42]
implements [51] and beneath-and-beyond (bb) implements the Beneath-and-Beyond algorithm in polymake [52]. 
The package cdd [53] implements the double description method, and lrs implements the gift-wrapping algorithm us-
ing reverse search [54]. All packages apart from cdd can be used to compute volumes of polytopes. We show that the 
application of our method accelerates Triangulation and outperforms other software.

We design the input of our experiments parametrized on the number type of the coefficients and on the distribution of 
the points. We test our method with synthetic data first. The number type is either rational or integer. From now on, when 
we refer to rational and integer we mean scenario (b) and (d), respectively. We test the three uniform point distributions 
described below. When the performance of the tested algorithms on two different distributions is similar, we present the 
results that correspond to only one of the distributions.

i. in the d-cube [−100, 100]d ,
ii. in the origin-centered d-ball of radius 100, and

iii. on the surface of the ball of (ii).

First, we test our method against volume computation provided by lrs. Our software in dimension 6 can be up to 20
times faster (Fig. 6). This is an experimental evidence that our method could be used to compute volumes of polytopes for 
which state-of-the-art methods halt. Also note that the algorithms of vinci [55] another state-of-the-art software for exact 
volume computation were not faster than lrs in our experiments. In particular, the only available algorithm that vinci
provides when the input polytope representation is given by points and the inequalities are not known uses lrs.

Second, we perform an experimental comparison of the four convex hull packages and hdch, with input points from dis-
tributions (i)–(iii) with either rational or integer coefficients. In the case of integer coefficients, we test hdch using mpq_t
(hdch_q) or mpz_t (hdch_z). In this case hdch_z is the most efficient with input from distribution (ii) (Fig. 7(a); distri-
bution (i) is similar to this) while in distribution (iii) both hdch_z and hdch_q perform better than all the other packages 
(see Fig. 7(b)). In the rational coefficients case, hdch_q is competitive to the fastest package (Fig. 8). Note that the rest 
of the packages cannot perform arithmetic computations using mpz_t because they are lacking division-free determinant 
algorithms. It should be noted that hdch is always faster than Triangulation. The sole modification of the determinant 
algorithm made it faster than all other implementations in the tested scenarios.
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Fig. 6. Volume computation experiments; input is random points in a cube of dimension 6; i.e. distribution (i). Times in seconds averaged over 100 tests.

Table 1
Comparison of hdch_q, hdch_z and Triangulation. Points from distribution (iii) with integer coefficients;
swap means that the machine used swap memory. Times averaged over 100 tests.

n d hdch_q hdch_z Triangulation

Time 
(sec)

Memory 
(MB)

Time 
(sec)

Memory 
(MB)

Time 
(sec)

Memory 
(MB)

260 2 0.02 35.02 0.01 33.48 0.05 35.04
500 2 0.04 35.07 0.02 33.53 0.12 35.08
260 3 0.07 35.20 0.04 33.64 0.20 35.23
500 3 0.19 35.54 0.11 33.96 0.50 35.54
260 4 0.39 35.87 0.21 34.33 0.82 35.46
500 4 0.90 37.07 0.47 35.48 1.92 37.17
260 5 2.22 39.68 1.08 38.13 3.74 39.56
500 5 5.10 45.21 2.51 43.51 8.43 45.34

260 6 14.77 1531.76 8.42 1132.72 20.01 55.15
500 6 37.77 3834.19 21.49 2826.77 51.13 83.98
220 7 56.19 6007.08 32.25 4494.04 90.06 102.34
320 7 swap swap 62.01 8175.21 164.83 185.87
120 8 86.59 8487.80 45.12 6318.14 151.81 132.70
140 8 swap swap 72.81 8749.04 213.59 186.19

Table 2
Computing resultant polytopes. Times averaged over 100 tests.

n d Time (sec) Volume

hdch_q hdch_z Triangulation

80 6 0.54 0.27 0.66 368 986.7
100 6 0.69 0.33 0.87 108 096.3
110 6 1.20 0.52 1.40 1 456 226 058.5
125 6 1.28 0.61 1.66 66137.3
376 7 17.07 7.80 24.41 1 713 149 926.2
414 7 23.02 10.91 32.54 82 132 445.9
500 7 29.40 13.05 41.22 2 593 047 991.6
528 7 38.22 17.96 54.91 33 727 790.7

Moreover, we quantify the improvements of hashed dynamic determinants scheme on Triangulation. For input 
points from distribution (iii) with integer coefficients, when dimension ranges from 3 to 8, hdch_q is up to 1.7 times faster 
than Triangulation and hdch_z up to 3.5 times faster (see Table 1). Table 1 also quantifies the memory consumption 
needed to obtain these speed-ups.

We emphasize the utilization of the hashed dynamic determinants scheme when working with real data. We carry out 
experiments using as input several resultant polytopes. These polytopes are fundamental in algebraic geometry [56] and 
have been also studied from a computational point of view [30]. The list of their applications contains polynomial system 
solving and computer aided design [30]. A basic property of these polytopes is that their vertices have integral coefficients. 
The results in Table 2 show a speed-up of up to 3 times using hdch_z with respect to Triangulation. The last column 
shows the exact volume computed for these polytopes.
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Fig. 7. Comparison of convex hull packages for 6-dimensional inputs with integer coefficients. Points are uniformly distributed (a) inside a 6-ball and (b) on 
its surface. Times averaged over 100 tests.

Fig. 8. Comparison of convex hull packages for 6-dimensional inputs with rational coefficients. Points are uniformly distributed (a) inside a 6-ball and (b) 
on its surface. Times averaged over 100 tests.

We test the efficiency of hashed dynamic determinants scheme on the point location problem in a triangulation. Given 
a pointset, Triangulation constructs a triangulation of the convex hull of the pointset and a data structure that can 
perform point locations of new points. In addition to that, hdch constructs the hash table with matrices and determinants 
used for faster orientation computations. We perform tests with Triangulation and hdch using input points uniformly 
distributed on the surface of a ball (distribution (iii)) as a preprocessing to build the data structures. Then, we perform 
point locations using points uniformly distributed inside a cube (distribution (i)). Experiments show that our method yields 
a speed-up in query time by a factor of 35 to 78 when dimension ranges from 8 to 11 using points with integer coefficients 
(scenario (d)) (see Table 3).

4.5. Memory consumption

The main disadvantage of hdch is the amount of memory consumed, which allows us to compute up to dimension 8
(see Table 1). One can think at this point that an intelligent memory allocation scheme could improve the performance 
of our algorithms. However, tests with an implementation of hdch using the Boehm–DeMers–Weiser conservative garbage 
collector [57] did not show improvements in computing time. This can be due to the fact that the complexity of the oper-
ations performed on the allocated numbers surpasses the complexity of the allocated space. Thus, changing the allocation 
scheme would not reduce significantly the computation time. This drawback can be seen as the price to pay for the obtained 
speed-up.

The large memory consumption of our method can be overhauled by exploiting hybrid techniques. That is, to use the 
dynamic determinant hashing scheme as long as there is enough memory and subsequently use the best available determi-
nant algorithm (Section 4). Alternative options are to clean periodically the hash table or to use a Least Recently Used (LRU) 
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Table 3
Point location experiments. Time of 1 K and 1000 K (1 K = 1000) query points for hdch_z and Triangula-
tion (triang), using distribution (iii) for preprocessing and distribution (i) for queries and integer coefficients. 
Times averaged over 100 tests for 1 K data.

d n Preproc. 
time (sec)

Data structs. 
(MB)

# of cells in 
triangul.

Query time (sec)

1 K 1000 K

hdch_z 8 120 45.20 6913 319 438 0.41 392.55
triang 8 120 156.55 134 319 438 14.42 14 012.60

hdch_z 9 70 45.69 6826 265 874 0.28 276.90
triang 9 70 176.62 143 265 874 13.80 13 520.43

hdch_z 10 50 43.45 6355 207 190 0.27 217.45
triang 10 50 188.68 127 207 190 14.40 14 453.46

hdch_z 11 39 38.82 5964 14 8846 0.18 189.56
triang 11 39 181.35 122 14 8846 14.41 14 828.67

cache to avoid storing for long time unused determinants and matrices. For the latter, techniques for efficiently computing 
determinants of matrices with more than one update, as described by Sankowski [33], could be utilized.

4.6. Filtering

As shown by experiments, one main advantage of the dynamic determinant method shows up when applied to ex-
act geometric constructions. One question that arises, and could be a subject of future work, is whether we can use this 
method to geometric predicates that benefit from filtering techniques. While in low dimensions filtering provides a very 
efficient framework for computing signs of determinants, in medium and high dimensions filtering with double-precision 
floating-point numbers is not efficient, since it reverts too often to exact computations [43]. Recent work in CGAL, namely 
the Epick_d kernel, tries to overcome this limitation using hardware and software advances, pushing forward the dimen-
sions on which filtering can be used. Preliminary tests indicate that our implementation, without filtering, is faster than the 
filtering implemented by Boissonnat et al. [43], but slower than the new implementation in Epick_d.

Brönnimann et al. [28] propose another filtering scheme for determinant computations in medium dimensions, using a 
decomposition method which is numerically more stable than the usual LU decomposition. However, the authors are not 
aware of any work that evaluates the efficiency of this technique in practice.

5. Concluding remarks

Our paper introduces a method of optimizing the computation of sequences of determinants, using dynamic determinant 
updates and the well-known Sherman–Morrison formulas. Despite of being well-known this is the first time these formulas 
are use to geometric algorithms, which make heavy use of similar determinant computations. We demonstrate how this can 
be done and also present experimental evidences about the supremacy of these methods over state-of-the-art methods in 
determinant and geometric computations.

A future improvement in the memory consumption of our method could be the exploitation of hybrid memory manage-
ment techniques as discussed in Section 4. One extension of the proposed method of this paper would be the application of 
dynamic determinants to the gift wrapping (GfR) convex hull algorithms [58,54]. Such an extension would certainly improve 
the memory consumption of our method.

Overall we hope that the research results presented in this paper will promote the use of these update formulas in other 
geometric algorithms implementations, and will trigger some further applied-research regarding searching and storing the 
determinant-adjoint pairs as well as the use of dynamic determinants methods together with filtered computations.
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Appendix A. Complexity of Bird’s determinant algorithm

So far we choose to implement Bird’s algorithm [13] to represent the class of combinatorial determinant algorithms. In 
the original paper, it is stated that the complexity is bounded by O

(
dM(d)

)
, where M(d) is the cost of multiplicating two 

matrices.
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We choose in this paper to implement the above mentioned algorithm using schoolbook matrix multiplication [46, §3.1]. 
The given complexity bound still holds, but we compute in this section a tighter bound for our specific case.

The tool we use in the analysis is Faulhaber’s formula [59], which gives a form to compute sums of powers. For particular 
values of the exponent of the summed numbers, this formula turns into

P (d) =
d∑

k=1

k2 = 1

6

(
2d3 + 3d2 + d

)
, and (A.1)

T (d) =
d∑

k=1

k3 = 1

4

(
d4 + 2d3 + d2). (A.2)

With Equations (A.1) and (A.2), we are ready to develop the formulas to compute the complexity bound. Let us assume 
that the matrix has size d. We will compute the number of scalar multiplications done by the algorithm, and show then 
that the number of additions is bounded by the same function.

The algorithm performs, on its first step, a partial multiplication of one upper-triangular matrix and a full matrix. More-
over, only the upper triangular part of this matrix will be used in the next step; thus we consider in the sequel only the 
computation of the entries which will be used.

Let us consider the rows of the resulting matrix. The first row contains d elements and, to compute each one of them, 
we need d multiplications. The second row contains d −1 non-zero elements and, to compute each one of them, we need to 
perform only d − 1 multiplications (since we do not perform one multiplication, because we know the first element of the 
second row of an upper-triangular matrix is zero). With analogous reasoning for each row, we can conclude that, to compute 
the (d − k)-th row of the product, we need k2 multiplications. To compute the first matrix, we need thus P (d) = ∑d

k=1 k2.
Let us consider the second step. Of the matrix computed on the first step, we need all but the last row. In fact, in step 

s of the algorithm, we need only the first d − s rows. In fact, we will compute only the rows which are needed. This means 
that, in step s of the algorithm, we will perform P (d) − P (s) scalar multiplications. It follows that the amount of scalar 
multiplications needed by the algorithm is

A(d) = dP (d) −
d−1∑
j=0

P ( j) (A.3)

Since we know how to compute the minuend, let us concentrate on the sum of the P ( j)’s.

d−1∑
j=0

P ( j) = 1

3

(
d−1∑
j=0

j3

)
+ 1

2

(
d−1∑
j=0

j2

)
+ 1

6

(
d−1∑
j=0

j

)

= 1

3
T (d − 1) + 1

2
P (d − 1) + 1

12
(d − 1)d

= 1

12

(
(d − 1)4 + 2(d − 1)3 + (d − 1)2 + 2(d − 1)3 + 3(d − 1)2 + (d − 1) + (d − 1)d

)

= 1

12

(
(d − 1)4 + 4(d − 1)3 + 4(d − 1)2 + (d − 1)(d + 1)

)
(A.4)

Substituting Equation (A.4) in Equation (A.3) we have the following.

A(d) = dP (d) −
d−1∑
j=0

P ( j)

= 1

12

(
4d4 + O (d3)

)
− 1

12

(
(d − 1)4 + O (d3)

)

= 1

4
d4 + O (d3) (A.5)

Equation (A.5) bounds the number of scalar multiplications done by Bird’s algorithm when using schoolbook matrix 
multiplication. Let us now bound the number of scalar additions done. Observe that, for multiplicating two matrices, the 
number of scalar additions is always smaller than the number of scalar multiplications. Beyond those, the algorithm needs 
to perform at most d scalar additions on each step. This means that the number of scalar additions performed by the 
algorithm is also bounded by A(d).
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[15] A. Urbańska, Faster combinatorial algorithms for determinant and Pfaffian, Algorithmica 56 (2010) 35–50, http://dx.doi.org/10.1007/s00453-008-9240-9.
[16] C. Krattenthaler, Advanced determinant calculus: a complement, Linear Algebra Appl. 411 (2005) 68, http://dx.doi.org/10.1016/j.laa.2005.06.042.
[17] A. Barvinok, J.E. Pommersheim, An algorithmic theory of lattice points in polyhedra, in: New Perspectives in Algebraic Combinatorics, vol. 38, 1999, 

pp. 91–147, http://library.msri.org/books/Book38/files/barvinok.pdf.
[18] J. Rambau, TOPCOM: triangulations of point configurations and oriented matroids, in: A. Cohen, X.-S. Gao, N. Takayama (Eds.), Math. Software: ICMS, 

World Scientific, 2002, pp. 330–340.
[19] D.A. Cox, J.B. Little, D. O’Shea, Using Algebraic Geometry, Graduate Texts in Mathematics, Springer-Verlag, Berlin–Heidelberg–New York, 2005.
[20] S. Basu, R. Pollack, M.-F. Roy, Algorithms in Real Algebraic Geometry, Springer-Verlag, Berlin, 2003.
[21] I.Z. Emiris, T. Kalinka, C. Konaxis, T.L. Ba, Implicitization of curves and (hyper)surfaces using predicted support, in: Symbolic-Numerical Algorithms, 

Theor. Comput. Sci. 479 (2013) 81–98, http://dx.doi.org/10.1016/j.tcs.2012.10.018.
[22] J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen, E. Kaltofen, B.D. Saunders, W.J. Turner, G. Villard, LinBox: a generic library for exact linear 

algebra, in: A.M. Cohen, X.-S. Gao, N. Takayama (Eds.), First International Congress of Mathematical Software, ICMS’2002, August 2002, World Scientific, 
Beijing, China, 2002, pp. 40–50, http://lara.inist.fr/bitstream/handle/2332/793/LIP-RR2002-15.pdf.

[23] G. Guennebaud, B. Jacob, et al., Eigen v3, http://eigen.tuxfamily.org, 2010.
[24] K.L. Clarkson, Safe and effective determinant evaluation, in: Proc. 33rd Annual Symposium on Foundations of Computer Science, Pittsburgh PA, 1992, 

pp. 387–395.
[25] H. Brönnimann, I.Z. Emiris, V. Pan, S. Pion, Sign determination in residue number systems, Theor. Comput. Sci. 210 (1) (1999) 173–197, http://dx.doi.org/

10.1016/S0304-3975(98)00101-7.
[26] J. Abbott, M. Bronstein, T. Mulders, Fast deterministic computation of determinants of dense matrices, in: Proceedings of the 1999 International 

Symposium on Symbolic and Algebraic Computation, ISSAC ’99, ACM, New York, NY, USA, 1999, pp. 197–204.
[27] H. Brönnimann, M. Yvinec, Efficient exact evaluation of signs of determinants, Algorithmica 27 (1) (2000) 21–56, http://dx.doi.org/10.1007/

s004530010003.
[28] H. Brönnimann, C. Burnikel, S. Pion, Interval arithmetic yields efficient dynamic filters for computational geometry, in: 14th European Workshop on 

Computational Geometry, Discrete Appl. Math. 109 (1–2) (2001) 25–47, http://dx.doi.org/10.1016/S0166-218X(00)00231-6.
[29] E. Kaltofen, G. Villard, Computing the sign or the value of the determinant of an integer matrix, a complexity survey, J. Comput. Appl. Math. 162 (1) 

(2004) 133–146, http://dx.doi.org/10.1016/j.cam.2003.08.019.
[30] I. Emiris, V. Fisikopoulos, C. Konaxis, L. Peñaranda, An oracle-based, output-sensitive algorithm for projections of resultant polytopes, Int. J. Comput. 

Geom. Appl. 23 (4–5) (2013) 397–423, http://dx.doi.org/10.1142/S0218195913600108 (special issue of invited papers from SoCG’12).
[31] J. Sherman, W.J. Morrison, Adjustment of an inverse matrix corresponding to a change in one element of a given matrix, Ann. Math. Stat. 21 (1) (1950) 

124–127, http://dx.doi.org/10.1214/aoms/1177729893.
[32] M.S. Bartlett, An inverse matrix adjustment arising in discriminant analysis, Ann. Math. Stat. 22 (1) (1951) 107–111, http://dx.doi.org/10.1214/aoms/

1177729698.
[33] P. Sankowski, Dynamic transitive closure via dynamic matrix inverse: extended abstract, in: 45th Annual IEEE Symposium on Foundations of Computer 

Science, 2004. Proceedings, IEEE, 2004, pp. 509–517.
[34] K. Avrachenkov, N. Litvak, The effect of new links on Google PageRank, Stoch. Models 22 (2) (2006) 319–331, http://dx.doi.org/10.1080/

15326340600649052.
[35] V. Fisikopoulos, L. Peñaranda, Faster geometric algorithms via dynamic determinant computation, in: Proceedings of the 20th European Symposium on 

Algorithms, ESA 2012, in: Lecture Notes in Computer Science, vol. 7501, Springer, Ljubljana, Slovenia, 2012, pp. 443–454.
[36] D.A. Harville, Matrix Algebra from a Statistician’s Perspective, Springer-Verlag, New York, 1997.
[37] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, New York, Inc., New York, NY, USA, 1987.
[38] K.L. Clarkson, P.W. Shor, Applications of random sampling in computational geometry, II, Discrete Comput. Geom. 4 (1) (1989) 387–421, http://dx.doi.

org/10.1007/BF02187740.
[39] D.J.H. Garling, Inequalities: A Journey into Linear Analysis, Cambridge University Press, 2007, Cambridge Books Online.
[40] G.M. Ziegler, Lectures on Polytopes, Springer, 1995.
[41] Boost: peer reviewed C++ libraries, http://www.boost.org, 2015.

http://refhub.elsevier.com/S0925-7721(15)00126-1/bib5961705F6578616374s1
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib5961705F6578616374s1
http://www.cgal.org
http://dx.doi.org/10.1016/j.comgeo.2007.06.003
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib426F69735F626F6F6Bs1
http://circle.ubc.ca/bitstream/handle/2429/22652/UBC_1981_A6_7S45.pdf
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib4275656C657239386578616374766F6C756D65s1
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib4275656C657239386578616374766F6C756D65s1
http://dx.doi.org/10.2307/2005828
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib4C6547616C6C3134s1
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib4C6547616C6C3134s1
http://dx.doi.org/10.2307/2004533
http://dx.doi.org/10.1007/s00037-004-0185-3
http://dl.acm.org/citation.cfm?id=314161.314429
http://dl.acm.org/citation.cfm?id=314161.314429
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib526F74653031s1
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib526F74653031s1
http://dx.doi.org/10.1016/j.ipl.2011.08.006
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib43573837s1
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib43573837s1
http://dx.doi.org/10.1007/s00453-008-9240-9
http://dx.doi.org/10.1016/j.laa.2005.06.042
http://library.msri.org/books/Book38/files/barvinok.pdf
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib52616D62544F50434F4Ds1
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib52616D62544F50434F4Ds1
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib436F782D4C6974746C652D4F536865613A55414732303035s1
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib4261506F526Fs1
http://dx.doi.org/10.1016/j.tcs.2012.10.018
http://lara.inist.fr/bitstream/handle/2332/793/LIP-RR2002-15.pdf
http://eigen.tuxfamily.org
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib433932s1
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib433932s1
http://dx.doi.org/10.1016/S0304-3975(98)00101-7
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib416242724D753939s1
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib416242724D753939s1
http://dx.doi.org/10.1007/s004530010003
http://dx.doi.org/10.1016/S0166-218X(00)00231-6
http://dx.doi.org/10.1016/j.cam.2003.08.019
http://dx.doi.org/10.1142/S0218195913600108
http://dx.doi.org/10.1214/aoms/1177729893
http://dx.doi.org/10.1214/aoms/1177729698
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib53616E6B6F77736B693034s1
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib53616E6B6F77736B693034s1
http://dx.doi.org/10.1080/15326340600649052
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib46505F4553413132s1
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib46505F4553413132s1
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib486172763937s1
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib4564656C73623837s1
http://dx.doi.org/10.1007/BF02187740
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib4761726C696E673037s1
http://refhub.elsevier.com/S0925-7721(15)00126-1/bib5A6965676C6572s1
http://www.boost.org
http://dx.doi.org/10.2307/2005828
http://dx.doi.org/10.2307/2004533
http://dx.doi.org/10.1007/s00037-004-0185-3
http://dx.doi.org/10.1016/j.ipl.2011.08.006
http://dx.doi.org/10.1016/S0304-3975(98)00101-7
http://dx.doi.org/10.1007/s004530010003
http://dx.doi.org/10.1214/aoms/1177729698
http://dx.doi.org/10.1080/15326340600649052
http://dx.doi.org/10.1007/BF02187740


16 V. Fisikopoulos, L. Peñaranda / Computational Geometry 54 (2016) 1–16
[42] S. Hornus, O. Devillers, C. Jamin, dD triangulations, in: CGAL User and Reference Manual, 4.6.1 edition, 2015, CGAL Editorial Board http://doc.cgal.
org/4.6.1/Manual/packages.html#PkgTriangulationsSummary.

[43] J.-D. Boissonnat, O. Devillers, S. Hornus, Incremental construction of the Delaunay triangulation and the Delaunay graph in medium dimension, in: 
SoCG, ACM, 009, pp. 208–216, http://dx.doi.org/10.1145/1542362.1542403.

[44] G. Villard, A study of Coppersmith’s block Wiedemann algorithm using matrix polynomials, IMAG Research Report 975-I-M. Apr. 1997, http://perso.
ens-lyon.fr/gilles.villard/BIBLIOGRAPHIE/PDF/rr0497.pdf.
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