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Abstract. Determinant computation is the core procedure in many im-
portant geometric algorithms, such as convex hull computations and
point locations. As the dimension of the computation space grows, a
higher percentage of the computation time is consumed by these pred-
icates. In this paper we study the sequences of determinants that ap-
pear in geometric algorithms. We use dynamic determinant algorithms
to speed-up the computation of each predicate by using information from
previously computed predicates.

We propose two dynamic determinant algorithms with quadratic com-
plexity when employed in convex hull computations, and with linear
complexity when used in point location problems. Moreover, we imple-
ment them and perform an experimental analysis. Our implementations
outperform the state-of-the-art determinant and convex hull implemen-
tations in most of the tested scenarios, as well as giving a speed-up of 78
times in point location problems.

Keywords: computational geometry, determinant algorithms, orienta-
tion predicate, convex hull, point location, experimental analysis.

1 Introduction

Determinantal predicates are in the core of many important geometric algo-
rithms. Convex hull and regular triangulation algorithms use orientation predi-
cates, the Delaunay triangulation algorithms also involve the in-sphere predicate.
Moreover, algorithms for exact volume computation of a convex polytope rely
on determinantal volume formulas. In general dimension d, the orientation pred-
icate of d + 1 points is the sign of the determinant of a matrix containing the
homogeneous coordinates of the points as columns. In a similar way, the volume
determinant formula and in-sphere predicate of d + 1 and d + 2 points respec-
tively can be defined. In practice, as the dimension grows, a higher percentage
of the computation time is consumed by these core procedures. For this reason,
we focus on algorithms and implementations for the exact computation of the
determinant. We give particular emphasis to division-free algorithms. Avoiding
divisions is crucial when working on a ring that is not a field, e.g., integers or
polynomials. Determinants of matrices whose elements are in a ring arise in com-
binatorial problems [21], in algorithms for lattice polyhedra [4] and secondary
polytopes [23] or in computational algebraic geometry problems [12].
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Our main observation is that, in a sequence of computations of determinants
that appear in geometric algorithms, the computation of one predicate can be
accelerated by using information from the computation of previously computed
predicates. In this paper, we study orientation predicates that appear in convex
hull computations. The convex hull problem is probably the most fundamental
problem in discrete computational geometry. In fact, the problems of regular
and Delaunay triangulations reduce to it.

Our main contribution is twofold. First, we propose an algorithm with qua-
dratic complexity for the determinants involved in a convex hull computation
and linear complexity for those involved in point location problems. Moreover,
we nominate a variant of this algorithm that can perform computations over the
integers. Second, we implement our proposed algorithms along with division-free
determinant algorithms from the literature. We perform an experimental analy-
sis of the current state-of-the-art packages for exact determinant computations
along with our implementations. Without taking the dynamic algorithms into
account, the experiments serve as a case study of the best implementation of
determinant algorithms, which is of independent interest. However, dynamic al-
gorithms outperform the other determinant implementations in almost all the
cases. Moreover, we implement our method on top of the convex hull package
triangulation [6] and experimentally show that it attains a speed-up up to 3.5
times, results in a faster than state-of-the-art convex hull package and a compet-
itive implementation for exact volume computation, as well as giving a speed-up
of 78 times in point location problems.

Let us review previous work. There is a variety of algorithms and implemen-
tations for computing the determinant of a d × d matrix. By denoting O(dω)
their complexity, the best current ω is 2.697263 [20]. However, good asymp-
totic complexity does not imply good behavior in practice for small and medium
dimensions. For instance, LinBox [13] which implements algorithms with state-
of-the-art asymptotic complexity, introduces a significant overhead in medium
dimensions, and seems most suitable in very high dimensions (typically > 100).
Eigen [18] and CGAL [10] implement decomposition methods of complexity
O(n3) and seem to be suitable for low to medium dimensions. There exist al-
gorithms that avoid divisions such as [24] with complexity O(n4) and [5] with
complexity O(nM(n)) where M(n) is the complexity of matrix multiplication.
In addition, there exists a variety of algorithms for determinant sign computa-
tion [8,1]. The problem of computation of several determinants has also been
studied. TOPCOM [23], the reference software for computing triangulations of
a set of points, efficiently precomputes all orientation determinants that will be
needed in the computation and stores their signs. In [15], a similar problem is
studied in the context of computational algebraic geometry. The computation
of orientation predicates is accelerated by maintaining a hash table of computed
minors of the determinants. These minors appear many times in the computa-
tion. Although, applying that method to the convex hull computation does not
lead to a more efficient algorithm.
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Our main tools are the Sherman-Morrison formulas [27,3]. They relate the
inverse of a matrix after a small-rank perturbation to the inverse of the original
matrix. In [25] these formulas are used in a similar way to solve the dynamic
transitive closure problem in graphs.

The paper is organized as follows. Sect. 2 introduces the dynamic determinant
algorithms and the following section presents their application to the convex hull
problem. Sect. 4 discusses the implementation, experiments, and comparison
with other software. We conclude with future work.

2 Dynamic Determinant Computations

In the dynamic determinant problem, a d× d matrix A is given. Allowing some
preprocessing, we should be able to handle updates of elements of A and re-
turn the current value of the determinant. We consider here only non-singular
updates, i.e., updates that do not make A singular. Let (A)i denote the i-th
column of A, and ei the vector with 1 in its i-th place and 0 everywhere else.

Consider the matrix A′, resulting from replacing the i-th column of A by
a vector u. The Sherman-Morrison formula [27,3] states that (A + wvT )−1 =

A−1 − (A−1w)(vTA−1)
1+vT A−1w . An i-th column update of A is performed by substituting

v = ei and w = u − (A)i in the above formula. Then, we can write A′−1 as
follows.

A′−1 = (A+ (u− (A)i)e
T
i )

−1 = A−1 − (A−1(u− (A)i)) (e
T
i A

−1)

1 + eTi A
−1(u− (A)i)

(1)

If A−1 is computed, we compute A′−1 using Eq. 1 in 3d2 +2d+O(1) arithmetic
operations. Similarly, the matrix determinant lemma [19] gives Eq. 2 below to
compute det(A′) in 2d+O(1) arithmetic operations, if det(A) is computed.

det(A′) = det(A+ (u− (A)i)e
T
i ) = (1 + eTi A

−1(u− (A)i)det(A) (2)

Eqs. 1 and 2 lead to the following result.

Proposition 1. [27] The dynamic determinant problem can be solved using
O(dω) arithmetic operations for preprocessing and O(d2) for non-singular one
column updates.

Indeed, this computation can also be performed over a ring. To this end, we
use the adjoint of A, denoted by Aadj , rather than the inverse. It holds that
Aadj = det(A)A−1, thus we obtain the following two equations.

A′adj =
1

det(A)
(Aadj det(A′)− (Aadj(u − (A)i)) (e

T
i A

adj)) (3)

det(A′) = det(A) + eTi A
adj(u − (A)i) (4)

The only division, in Eq. 3, is known to be exact, i.e., its remainder is zero. The
above computations can be performed in 5d2+d+O(1) arithmetic operations for
Eq. 3 and in 2d+O(1) for Eq. 4. In the sequel, we will call dyn inv the dynamic
determinant algorithm which uses Eqs. 1 and 2, and dyn adj the one which uses
Eqs. 3 and 4.
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3 Geometric Algorithms

We introduce in this section our methods for optimizing the computation of
sequences of determinants that appear in geometric algorithms. First, we use
dynamic determinant computations in incremental convex hull algorithms. Then,
we show how this solution can be extended to point location in triangulations.

Let us start with some basic definitions from discrete and computational ge-
ometry. Let A ⊂ R

d be a pointset. We define the convex hull of a pointset A,
denoted by conv(A), as the smallest convex set containing A. A hyperplane sup-
ports conv(A) if conv(A) is entirely contained in one of the two closed half-spaces
determined by the hyperplane and has at least one point on the hyperplane.
A face of conv(A) is the intersection of conv(A) with a supporting hyperplane
which does not contain conv(A). Faces of dimension 0, 1, d−1 are called vertices,
edges and facets respectively. We call a face f of conv(A) visible from a ∈ R

d if
there is a supporting hyperplane of f such that conv(A) is contained in one of
the two closed half-spaces determined by the hyperplane and a in the other. A k-
simplex of A is an affinely independent subset S of A, where dim(conv(S)) = k.
A triangulation of A is a collection of subsets of A, the cells of the triangula-
tion, such that the union of the cells’ convex hulls equals conv(A), every pair of
convex hulls of cells intersect at a common face and every cell is a simplex.

Denote a the vector (a, 1) for a ∈ R
d. For any sequence C of points ai ∈ A, i =

1 . . . d+1, we denote AC its orientation (d+1)×(d+1) matrix. For every ai, the
column i of AC contains ai’s coordinates as entries. For simplicity, we assume
general position of A and focus on the Beneath-and-Beyond (BB) algorithm
[26]. However, our method can be extended to handle degenerate inputs as in
[14, Sect. 8.4], as well as to be applied to any incremental convex hull algorithm
by utilizing the dynamic determinant computations to answer the predicates
appearing in point location (see Cor. 2). In what follows, we use the dynamic
determinant algorithm dyn adj, which can be replaced by dyn inv yielding a
variant of the presented convex hull algorithm.

The BB algorithm is initialized by computing a d-simplex of A. At every sub-
sequent step, a new point from A is inserted, while keeping a triangulated convex
hull of the inserted points. Let t be the number of cells of this triangulation. As-
sume that, at some step, a new point a ∈ A is inserted and T is the triangulation
of the convex hull of the points of A inserted up to now. To determine if a facet
F is visible from a, an orientation predicate involving a and the points of F has
to be computed. This can be done by using Eq. 4 if we know the adjoint matrix
of points of the cell that contains F . But, if F is visible, this cell is unique and
we can map it to the adjoint matrix corresponding to its points.

Our method (Alg. 1), as initialization, computes from scratch the adjoint
matrix that corresponds to the initial d-simplex. At every incremental step,
it computes the orientation predicates using the adjoint matrices computed in
previous steps and Eq. 4. It also computes the adjoint matrices corresponding to
the new cells using Eq. 3. By Prop. 1, this method leads to the following result.
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Algorithm 1: Incremental Convex Hull (A)

Input : pointset A ⊂ R
d

Output : convex hull of A
sort A by increasing lexicographic order of coordinates, i.e., A = {a1, . . . , an};
T ← { d-face of conv(a1, . . . , ad+1)}; // conv(a1, . . . , ad+1) is a d-simplex
Q← { facets of conv(a1, . . . , ad+1)};
compute Aadj

{a1,...,ad+1}, det(A{a1,...,ad+1});

foreach a ∈ {ad+2, . . . , an} do
Q′ ← Q;
foreach F ∈ Q do

C ← the unique d-face s.t. C ∈ T and F ∈ C;
u← the unique vertex s.t. u ∈ C and u /∈ F ;
C′ ← F ∪ {a};
i← the index of u in AC ;

// both det(AC) and Aadj
C were computed in a previous step

det(AC′)← det(AC) + (Aadj
C )i(u− a);

if det(AC′) det(AC) < 0 and det(AC′) �= 0 then

Aadj
C′ ← 1

det(AC)
(Aadj

C det(AC′)− Aadj
C (u− a)(eTi A

adj
C ));

T ← T ∪ {d-face of conv(C′)};
Q′ ← Q′ � {(d− 1)-faces of C′}; // symmetric difference

Q← Q′;

return Q;

Theorem 1. Given a d-dimensional pointset all, except the first, orientation
predicates of incremental convex hull algorithms can be computed in O(d2) time
and O(d2t) space, where t is the number of cells of the constructed triangulation.

Essentially, this result improves the computational complexity of the determi-
nants involved in incremental convex hull algorithms from O(dω) to O(d2). To
analyze the complexity of Alg. 1, we bound the number of facets of Q in every
step of the outer loop of Alg. 1 with the number of (d−1)-faces of the constructed
triangulation of conv(A), which is bounded by (d+1)t. Thus, using Thm. 1, we
have the following complexity bound for Alg. 1.

Corollary 1. Given n d-dimensional points, the complexity of BB algorithm is
O(n log n + d3nt), where n � d and t is the number of cells of the constructed
triangulation.

Note that the complexity of BB, without using the method of dynamic de-
terminants, is bounded by O(n logn + dω+1nt). Recall that t is bounded by
O(n�d/2�) [28, Sect.8.4], which shows that Alg. 1, and convex hull algorithms in
general, do not have polynomial complexity. The schematic description of Alg. 1
and its coarse analysis is good enough for our purpose: to illustrate the appli-
cation of dynamic determinant computation to incremental convex hulls and to
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quantify the improvement of our method. See Sect. 4 for a practical approach to
incremental convex hull algorithms using dynamic determinant computations.

The above results can be extended to improve the complexity of geometric
algorithms that are based on convex hulls computations, such as algorithms for
regular or Delaunay triangulations and Voronoi diagrams. It is straightforward
to apply the above method in orientation predicates appearing in point location
algorithms. By using Alg. 1, we compute a triangulation and a map of adjoint
matrices to its cells. Then, the point location predicates can be computed using
Eq. 4, avoiding the computation of new adjoint matrices.

Corollary 2. Given a triangulation of a d-dimensional pointset computed by
Alg. 1, the orientation predicates involved in any point location algorithm can be
computed in O(d) time and O(d2t) space, where t is the number of cells of the
triangulation.

4 Implementation and Experimental Analysis

We propose the hashed dynamic determinants scheme and implement it in C++.
The design of our implementation is modular, that is, it can be used on top of
either geometric software providing geometric predicates (such as orientation) or
algebraic software providing dynamic determinant algorithm implementations.
The code is publicly available from http://hdch.sourceforge.net.

The hashed dynamic determinants scheme consists of efficient implementa-
tions of algorithms dyn inv and dyn adj (Sect. 2) and a hash table, which stores
intermediate results (matrices and determinants) based on the methods pre-
sented in Sect. 3. Every (d − 1)-face of a triangulation, i.e., a common facet of
two neighbor cells (computed by any incremental convex hull package which con-
structs a triangulation of the computed convex hull), is mapped to the indices of
its vertices, which are used as keys. These are mapped to the adjoint (or inverse)
matrix and the determinant of one of the two adjacent cells. Let us illustrate
this approach with an example, on which we use the dyn adj algorithm.

Example 1. Let A = {a1 = (0, 1), a2 = (1, 2), a3 = (2, 1), a4 = (1, 0), a5 =
(2, 2)} where every point ai has an index i from 1 to 5. Assume we are in
some step of an incremental convex hull or point location algorithm and let T =
{{1, 2, 4}, {2, 3, 4}} be the 2-dimensional triangulation ofA computed so far. The
cells of T are written using the indices of the points inA. The hash table will store
as keys the set of indices of the 2-faces of T , i.e., {{1, 2}, {2, 4}, {1, 4}}mapping
to the adjoint and the determinant of the matrix constructed by the points
a1, a2, a4. Similarly, {{2, 3}, {3, 4}, {2, 4}} are mapped to the adjoint matrix and
determinant of a2, a3, a4. To insert a5, we compute the determinant of a2, a3, a5,
by querying the hash table for {2, 3}. Adjoint and determinant of the matrix of
a2, a3, a4 are returned, and we perform an update of the column corresponding
to point a4, replacing it by a5 by using Eqs. 3 and 4.

To implement the hash table, we used the Boost libraries [7]. To reduce memory
consumption and speed-up look-up time, we sort the lists of indices that form the

http://hdch.sourceforge.net
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hash keys. We also use the GNU Multiple Precision arithmetic library (GMP),
the current standard for multiple-precision arithmetic, which provides integer
and rational types mpz t and mpq t, respectively.

We perform an experimental analysis of the proposedmethods. All experiments
ran on an Intel Core i5-2400 3.1GHz, with 6MB L2 cache and 8GB RAM, running
64-bit Debian GNU/Linux. We divide our tests in four scenarios, according to the
number type involved in computations: (a) rationals where the bit-size of both
numerator and denominator is 10000, (b) rationals converted from doubles, that
is, numbers of the formm×2p, wherem and p are integers of bit-size 53 and 11 re-
spectively, (c) integers with bit-size 10000, and (d) integers with bit-size 32. How-
ever, it is rare to find in practice input coefficients of scenarios (a) and (c). Inputs
are usually given as 32 or 64-bit numbers. These inputs correspond to the coeffi-
cients of scenario (b). Scenario (d) is also very important, since points with integer
coefficients are encountered in many combinatorial applications (see Sect. 1).

We compare state-of-the-art software for exact computation of the deter-
minant of a matrix. We consider LU decomposition in CGAL [10], optimized
LU decomposition in Eigen [18], LinBox asymptotically optimal algorithms [13]
(tested only on integers) and Maple 14 LinearAlgebra[Determinant] (the de-
fault determinant algorithm). We also implemented two division-free algorithms:
Bird’s [5] and Laplace expansion [22, Sect.4.2]. Finally, we consider our imple-
mentations of dyn inv and dyn adj.

We test the above implementations in the four coefficient scenarios described
above.When coefficients are integer, we can use integer exact division algorithms,
which are faster than quotient-remainder division algorithms. In this case, Bird,
Laplace and dyn adj enjoy the advantage of using the number type mpz t while
the rest are using mpq t. The input matrices are constructed starting from a
random d × d matrix, replacing a randomly selected column with a random d
vector. We present experimental results of the most common in practice input
scenarios (b), (d) (Tables 1, 2). The rest will appear in the full version of the
paper. We stop testing an implementation when it is slow and far from being
the fastest (denoted with ’-’ in the Tables).

On one hand, the experiments show the most efficient determinant algorithm
implementation in the different scenarios described, without considering the dy-
namic algorithms. This is a result of independent interest, and shows the ef-
ficiency of division-free algorithms in some settings. The simplest determinant
algorithm, Laplace expansion, proved to be the best in all scenarios, until di-
mension 4 to 6, depending on the scenario. It has exponential complexity, thus
it is slow in dimensions higher than 6 but it behaves very well in low dimensions
because of the small constant of its complexity and the fact that it performs
no divisions. Bird is the fastest in scenario (c), starting from dimension 7, and
in scenario (d), in dimensions 7 and 8. It has also a small complexity constant,
and performing no divisions makes it competitive with decomposition methods
(which have better complexity) when working with integers. CGAL and Eigen
implement LU decomposition, but the latter is always around two times faster.
Eigen is the fastest implementation in scenarios (a) and (b), starting from di-
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Table 1. Determinant tests, inputs of scenario (b): rationals converted from double.
Each timing (in milliseconds) corresponds to the average of computing 10000 (for d < 7)
or 1000 (for d ≥ 7) determinants. Light blue highlights the best non-dynamic algorithm
while yellow highlights the dynamic algorithm if it is the fastest over all.

d Bird CGAL Eigen Laplace Maple dyn inv dyn adj

3 .013 .021 .014 .008 .058 .046 .023
4 .046 .050 .033 .020 .105 .108 .042
5 .122 .110 .072 .056 .288 .213 .067
6 .268 .225 .137 .141 .597 .376 .102
7 .522 .412 .243 .993 .824 .613 .148
8 .930 .710 .390 – 1.176 .920 .210
9 1.520 1.140 .630 – 1.732 1.330 .310
10 2.380 1.740 .940 – 2.380 1.830 .430
11 – 2.510 1.370 – 3.172 2.480 .570
12 – 3.570 2.000 – 4.298 3.260 .760
13 – 4.960 2.690 – 5.673 4.190 1.020
14 – 6.870 3.660 – 7.424 5.290 1.360
15 – 9.060 4.790 – 9.312 6.740 1.830

mension 5 and 6 respectively, as well as in scenario (d) in dimensions between
9 and 12. It should be stressed that decomposition methods are the current
standard to implement determinant computation. Maple is the fastest only in
scenario (d), starting from dimension 13. In our tests, Linbox is never the best,
due to the fact that it focuses on higher dimensions.

On the other hand, experiments show that dyn adj outperforms all the other
determinant algorithms in scenarios (b), (c), and (d). On each of these scenarios,
there is a threshold dimension, starting from which dyn adj is the most efficient,
which happens because of its better asymptotic complexity. In scenarios (c) and
(d), with integer coefficients, division-free performs much better, as expected,
because integer arithmetic is faster than rational. In general, the sizes of the
coefficients of the adjoint matrix are bounded. That is, the sizes of the operands
of the arithmetic operations are bounded. This explains the better performance
of dyn adj over the dyn inv, despite its worse arithmetic complexity.

For the experimental analysis of the behaviour of dynamic determinants used
in convex hull algorithms (Alg. 1, Sect. 3), we experiment with four state-of-
the-art exact convex hull packages. Two of them implement incremental convex
hull algorithms: triangulation [6] implements [11] and beneath-and-beyond

(bb) in polymake [17]. The package cdd [16] implements the double descrip-
tion method, and lrs implements the gift-wrapping algorithm using reverse
search [2]. We propose and implement a variant of triangulation, which we
will call hdch, implementing the hashed dynamic determinants scheme for di-
mensions higher than 6 (using Eigen for initial determinant and adjoint or inverse
matrix computation) and using Laplace determinant algorithm for lower dimen-
sions. The main difference between this implementation and Alg. 1 of Sect. 3 is
that it does not sort the points and, before inserting a point, it performs a point
location. Thus, we can take advantage of our scheme in two places: in the orien-
tation predicates appearing in the point location procedure and in the ones that
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Table 2. Determinant tests, inputs of scenario (d): integers of bit-size 32. Times in
milliseconds, averaged over 10000 tests. Highlighting as in Table 1.

d Bird CGAL Eigen Laplace Linbox Maple dyn inv dyn adj

3 .002 .021 .013 .002 .872 .045 .030 .008
4 .012 .041 .028 .005 1.010 .094 .058 .015
5 .032 .080 .048 .016 1.103 .214 .119 .023
6 .072 .155 .092 .040 1.232 .602 .197 .033
7 .138 .253 .149 .277 1.435 .716 .322 .046
8 .244 .439 .247 – 1.626 .791 .486 .068
9 .408 .689 .376 – 1.862 .906 .700 .085
10 .646 1.031 .568 – 2.160 1.014 .982 .107
11 .956 1.485 .800 – 10.127 1.113 1.291 .133
12 1.379 2.091 1.139 – 13.101 1.280 1.731 .160
13 1.957 2.779 1.485 – – 1.399 2.078 .184
14 2.603 3.722 1.968 – – 1.536 2.676 .222
15 3.485 4.989 2.565 – – 1.717 3.318 .269
16 4.682 6.517 3.391 – – 1.850 4.136 .333

appear in construction of the convex hull. We design the input of our experiments
parametrized on the number type of the coefficients and on the distribution of
the points. The number type is either rational or integer. From now on, when
we refer to rational and integer we mean scenario (b) and (d), respectively. We
test three uniform point distributions: (i) in the d-cube [−100, 100]d, (ii) in the
origin-centered d-ball of radius 100, and (iii) on the surface of that ball.

We perform an experimental comparison of the four above packages and hdch,
with input points from distributions (i)-(iii) with either rational or integer co-
efficients. In the case of integer coefficients, we test hdch using mpq t (hdch q)
or mpz t (hdch z). In this case hdch z is the most efficient with input from
distribution (ii) (Fig. 1(a); distribution (i) is similar to this) while in distribu-
tion (iii) both hdch z and hdch q perform better than all the other packages
(see Fig. 1(b)). In the rational coefficients case, hdch q is competitive to the
fastest package (not shown for space reasons). Note that the rest of the packages
cannot perform arithmetic computations using mpz t because they are lacking
division-free determinant algorithms. Moreover, we perform experiments to test
the improvements of hashed dynamic determinants scheme on triangulation

and their memory consumption. For input points from distribution (iii) with in-
teger coefficients, when dimension ranges from 3 to 8, hdch q is up to 1.7 times
faster than triangulation and hdch z up to 3.5 times faster (Table 3). It should
be noted that hdch is always faster than triangulation. The sole modification
of the determinant algorithmmade it faster than all other implementations in the
tested scenarios. The other implementations would also benefit from applying
the same determinant technique. The main disadvantage of hdch is the amount
of memory consumed, which allows us to compute up to dimension 8 (Table 3).
This drawback can be seen as the price to pay for the obtained speed-up.

A large class of algorithms that compute the exact volume of a polytope
is based on triangulation methods [9]. All the above packages compute the



452 V. Fisikopoulos and L. Peñaranda

Table 3. Comparison of hdch z, hdch q and triangulation using points from distri-
bution (iii) with integer coefficients; swap means that the machine used swap memory

|A| d hdch q hdch z triangulation

time (sec) memory (MB) time (sec) memory (MB) time (sec) memory (MB)

260 2 0.02 35.02 0.01 33.48 0.05 35.04
500 2 0.04 35.07 0.02 33.53 0.12 35.08
260 3 0.07 35.20 0.04 33.64 0.20 35.23
500 3 0.19 35.54 0.11 33.96 0.50 35.54
260 4 0.39 35.87 0.21 34.33 0.82 35.46
500 4 0.90 37.07 0.47 35.48 1.92 37.17
260 5 2.22 39.68 1.08 38.13 3.74 39.56
500 5 5.10 45.21 2.51 43.51 8.43 45.34

260 6 14.77 1531.76 8.42 1132.72 20.01 55.15
500 6 37.77 3834.19 21.49 2826.77 51.13 83.98
220 7 56.19 6007.08 32.25 4494.04 90.06 102.34
320 7 swap swap 62.01 8175.21 164.83 185.87
120 8 86.59 8487.80 45.12 6318.14 151.81 132.70
140 8 swap swap 72.81 8749.04 213.59 186.19
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Fig. 1. Comparison of convex hull packages for 6-dimensional inputs with integer co-
efficients. Points are uniformly distributed (a) inside a 6-ball and (b) on its surface.

volume of the polytope, defined by the input points, as part of the convex hull
computation. The volume computation takes place at the construction of the
triangulation during a convex hull computation. The sum of the volumes of the
cells of the triangulation equals the volume of the polytope. However, the volume
of the cell is the absolute value of the orientation determinant of the points of the
cell and these values are computed in the course of the convex hull computation.
Thus, the computation of the volume consumes no extra time besides the convex
hull computation time. Therefore, hdch yields a competitive implementation for
the exact computation of the volume of a polytope given by its vertices (Fig. 1).

Finally, we test the efficiency of hashed dynamic determinants scheme on the
point location problem. Given a pointset, triangulation constructs a data struc-
ture that can perform point locations of new points. In addition to that, hdch con-
structs a hash table for faster orientation computations. We perform tests with
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Table 4. Point location time of 1K and 1000K (1K=1000) query points for hdch z and
triangulation (triang), using distribution (iii) for preprocessing and distribution (i)
for queries and integer coefficients

d |A| preprocess data structures # of cells in query time (sec)
time (sec) memory (MB) triangulation 1K 1000K

hdch z 8 120 45.20 6913 319438 0.41 392.55
triang 8 120 156.55 134 319438 14.42 14012.60

hdch z 9 70 45.69 6826 265874 0.28 276.90
triang 9 70 176.62 143 265874 13.80 13520.43

hdch z 10 50 43.45 6355 207190 0.27 217.45
triang 10 50 188.68 127 207190 14.40 14453.46

hdch z 11 39 38.82 5964 148846 0.18 189.56
triang 11 39 181.35 122 148846 14.41 14828.67

triangulation and hdch using input points uniformly distributed on the surface
of a ball (distribution (iii)) as a preprocessing to build the data structures. Then,
we perform point locations using points uniformly distributed inside a cube (dis-
tribution (i)). Experiments show that our method yields a speed-up in query time
of a factor of 35 and 78 in dimension 8 to 11, respectively, using points with integer
coefficients (scenario (d)) (see Table 4).

5 Future Work

It would be interesting to adapt our scheme for gift-wrapping convex hull algo-
rithms and implement it on top of packages such as [2]. In this direction, our scheme
should also be adapted to other important geometric algorithms, such as Delaunay
triangulations.

In order to overcome the largememory consumption of ourmethod, we shall ex-
ploit hybrid techniques. That is, to use the dynamic determinant hashing scheme
as long as there is enough memory and subsequently use the best available deter-
minant algorithm (Sect. 4), or to clean periodically the hash table.

Another important experimental result would be to investigate the behavior of
our scheme using filtered computations.
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