
EuroCG 2014, Ein-Gedi, Israel, March 3–5, 2014

Efficient Random-Walk Methods for Approximating Polytope Volume

Ioannis Z. Emiris∗ Vissarion Fisikopoulos∗

Abstract

We study the fundamental problem of computing the
volume of a convex polytope given as an intersec-
tion of linear inequalities. We implement and experi-
mentally evaluate practical algorithms for accurately
approximating the polytope’s volume in high dimen-
sions (one hundred). Our code is significantly faster
than exact computation and more accurate, as well as
faster, than existing approximation methods.

1 Introduction

A fundamental problem in discrete and computational
geometry is to compute the volume of a convex body
in general dimension or, more particularly, of a poly-
tope. In the past 15 years, randomized algorithms for
this problem have witnessed a remarkable progress.
Starting with the breakthrough poly-time algorithm
of [4], subsequent results brought down the exponent
on the dimension from 27 to 4 [10]. However, the
question of a practical implementation that handles
general polytopes in high dimensions (a few hundred)
had remained open. We tackle this question here by
offering fast, accurate, public-domain software.
Convex bodies are typically given by a membership

oracle, i.e. given point p, the oracle decides whether
p lies in the body. A polytope P ⊆ Rd can also be
represented as the convex hull of vertices (V-polytope)
or, as is the case here, as the (bounded) intersection
P := {x ∈ Rd | Ax ≤ b} of m halfspaces given by
A ∈ Rm×d, b ∈ Rm (H-polytope); ∂P is its boundary.
Volume computation is #-P hard for V- and for H-

polytopes [5]. Several exact algorithms are surveyed
in [2] and implemented in VINCI, the state-of-the-art
software for exact volume computation, which, how-
ever, cannot handle general polytopes for dimension
d > 15. An interesting challenge is the volume of the
n-Birkhoff polytope, computed only for n ≤ 10 using
highly specialized software (Sect. 3).
The landmark randomized poly-time algorithm

in [4] approximates the volume of a convex body with

∗Department of Informatics and Telecommunications, Na-
tional and Kapodistrian University of Athens, Greece.
{emiris,vfisikop}@di.uoa.gr. This work is co-financed by the
European Union (European Social Fund - ESF) and Greek na-
tional funds through the Operational Program “Education and
Lifelong Learning” of the National Strategic Reference Frame-
work (NSRF) - Research Funding Program: THALIS - UOA
(MIS 375891).

high probability and arbitrarily small relative error.
The best complexity, as a function of d, given a mem-
bership oracle, is O∗(d4) oracle calls [10], while a sim-
pler, more geometric algorithm, which we shall use,
requires O∗(d5) calls [7]. O∗(·) hides polylog factors
in the argument. All approaches except [10] produce
uniform point samples in successively larger convex
subsets of P so as to approximate their volume.
Concerning software, in [9] they implement [10],

focusing on variance-decreasing techniques, and an
empirical estimation of mixing time. Very recently,
a randomized algorithm in Matlab has been an-
nounced 1; we show our software is faster and more
accurate in sect. 3.
The key ingredient of all approaches is sampling

points (almost) uniformly distributed in P . No sim-
ple sampling exists unless P is, e.g., a simplex, cube,
or ellipsoid. Acceptance-rejection techniques are in-
efficient in high dimensions: the number of uniform
points needed in a bounding box before finding one
in P is exponential in d. A Markov chain is the only
known method, and it may use (geometric) random
walks such as the grid walk, the ball walk, and Hit-
and-run [12]. The chain makes a large number of
steps, before the generated point becomes distributed
approximately uniformly. We focus on Hit-and-run
which yields the fastest algorithms today.
Our contributions are multifold. Concerning point

sampling we experimentally determine and set the
length W of the random walk to O(d) which is much
lower than the theoretical bounds and obtain a < 1%
error in up to 100 dimensions (Sect. 3). Our emphasis
is to exploit the underlying geometry. Our algorithm
uses a sequence of co-centric balls, and samples points
in their intersections with P (Sect. 2). Unlike pre-
vious methods, this forms a sequence of diminishing
radii thus allowing us to only sample partial gener-
ations of points in each intersection with P , instead
of sampling N points for each. Unlike most theo-
retical approaches, that use involved rounding pro-
cedures, we use a new simple method for iterative
rounding that allows us to handle skinny polytopes
efficiently (Sect. 2). Utilizing Coordinate Direction
Hit-and-run, we design an oracle with O(m) amor-
tized complexity (Sect. 2). We offer a series of exper-
iments establishing that our code handles dimensions
substantially larger than existing exact approaches,
e.g., cubes and products of simplices within an error

1http://www.cc.gatech.edu/∼bcousins/Volume.html



30th European Workshop on Computational Geometry, 2014

of 1% for d ≤ 100, in about 20 min. This paper is
an extended abstract of [6], which additionally offers
a study that exploits duality to reduce the oracle to
ε-nearest neighbor search.

2 The volume algorithm

Random walks, oracles, and sampling. Assume
we possess procedure Line(p), which returns line ℓ
through point p ∈ P ⊆ Rd; ℓ will be specified below.
The main procedure of Hit-and-run is Walk(p, P,W ),
which reads in point p ∈ P and repeats W times: (i)
run Line(p), (ii) move p to a random point uniformly
distributed on P ∩ ℓ. We shall consider two variants
of Hit-and-run.
In Random Directions Hit-and-run (RDHR),

Line(p) returns ℓ defined by a random vector uni-
formly distributed on the unit sphere centered at p.
The vector coordinates are drawn from the standard
normal distribution. RDHR generates a uniformly
distributed point in 1030O∗(d2r2), or 1011O∗(d3r2)
oracle calls starting at an arbitrary, or at a uni-
formly distributed point (aka warm start), respec-
tively, where r is the ratio of the radius of the smallest
enclosing ball over that of the largest enclosed ball in
P , and O∗(·) hides no constant [10].
In Coordinate Directions Hit-and-run (CDHR),

Line(p) returns ℓ defined by a random vector uni-
formly distributed on the set {e1, . . . , ed}, where ei =
(0, . . . , 0, 1, 0, . . . , 0), i = 1, . . . , d. This is a continu-
ous variant of the Grid walk. As far as the authors
know, the mixing time has not been analyzed. In [6]
we offer experimental evidence that CDHR is faster
than RDHR and sufficiently accurate.
In contrast to other walks, Hit-and-run requires at

every step the intersection of line ℓ with ∂P . In gen-
eral, this reduces to binary search on the line, call-
ing the membership oracle at every step. For H-
polytopes, the intersection is obtained by a bound-
ary oracle; for this, we employ ray-shooting with
respect to the m facet hyperplanes. We focus on
CDHR, therefore we may suppose ℓ is vertical. Let
us consider Walk(p0, P,W ) and vertical line ℓ = {x ∈
Rd : x = λv + p0}, where p0 ∈ Rd lies on ℓ, and
v is the vertical direction. We compute the inter-
section of ℓ with the i-th hyperplane aix = bi, ai ∈
Rd, bi ∈ R, namely pi := p0+

bi−aip0

aiv
v, i ∈ {1, . . . ,m}.

We seek points p+, p− at which ℓ intersects ∂P ,
namely p+v = min1≤i≤m{piv | piv ≥ 0}, p−v =
max1≤i≤m{piv | piv ≤ 0}. This is computed in O(md)
arithmetic operations. In practice, only the λ± are
computed, where p± = p0+λ±v. However, in CDHR,
after the computation of the first pair p+, p−, all other
pairs can be computed in O(m) arithmetic operations.
This is because two sequential points produced by the
walk differ only in one coordinate.
Given polytope P ⊆ Rd and approximation factor

ϵ > 0, the volume algorithm executes sandwiching and
Multiphase Monte Carlo (MMC) [11].

Rounding and sandwiching. There is an abundance
of methods in literature for sandwiching (cf. [11] and
references therein). The goal is to compute ball B and
scalar ρ > 1 such thatB ⊆ P ⊆ ρB. However, here we
develop a simpler method that instead of computing ρ
such that ρB covers P , computes B′ such that B′∩P
contains almost all the volume of P . Our method
handles efficiently skinny polytopes where ρ is large
(Sect. 3).
To this end we perform rounding of P . We sample

a set S of O(n) random points in P using the random
walk methods described above. Then we approximate
the minimum volume ellipsoid E that covers S, and
satisfies the inclusions 1

(1+ε)dE ⊆ conv(S) ⊆ E , in

time O(nd2(ε−1 + ln d+ ln lnn)) [8]. Let us write

E = {x ∈ Rd | (x− cE)
T E (x− cE) ≤ 1} (1)

where E ⊆ Rd×d is a positive semi-definite matrix
and LTL its Cholesky decomposition. By substituting
x = (LT )−1y+cE we map the ellipsoid to the ball {y ∈
Rd | yT y ≤ 1}. Applying this transformation to P we
have P ′ = {y ∈ Rd |A(LT )−1 ≤ b−AcE} which is the
rounded polytope, where vol(P ) = det(LT )−1vol(P ′).
We iterate this procedure until the variance of the set
of ellipsoid axes reaches some user-defined threshold.
For sandwiching P we first compute the Cheby-

chev ball B(c, r) of P , i.e. the largest in-
scribed ball in P . It suffices to solve the LP:
{maximize R, subject to: Aix + R∥Ai∥2 ≤ bi, i =
1, . . . ,m, R ≥ 0}, where Ai is the i-th row of A, and
the optimal values of R and x ∈ Rd yield, respectively,
the radius r and the center c of the Chebychev ball.
Then we may compute a uniform random point in

B(c, r) and use it as a start to perform a random
walk in P , eventually generating N random points.
Now, set ρ to be the largest distance between each
of the N points and c; this defines a (approximate)
bounding ball. Finally, define the sequence of balls
B(c, 2i/d), i = α, α + 1, . . . , β, where α = ⌊d log r⌋
and β = ⌈d log ρ⌉.

Multiphase Monte Carlo (MMC). MMC con-
structs a sequence of bodies Pi := P ∩B(c, 2i/d), i =
α, α + 1, . . . , β, where Pα = B(c, 2α/d) ⊆ B(c, r) and
Pβ (almost) contains P . Then it approximates vol(P )

by the telescopic product vol(Pα)
∏β

i=α+1
vol(Pi)

vol(Pi−1)
,

where vol(Pα) = 2πd/2(2⌊log r⌋)d/dΓ(d/2).
This reduces to estimating the ratios

vol(Pi)/vol(Pi−1), which is achieved by generat-
ing N uniformly distributed points in Pi and by
counting how many of them fall in Pi−1.
For point generation we use random walks as in

Sect. 2. We set the walk length W = ⌊10 + d/10⌋ =



EuroCG 2014, Ein-Gedi, Israel, March 3–5, 2014

O(d), which is of the same order as in [9] but signif-
icantly lower than theoretical bounds. This choice is
corroborated experimentally (Sect. 3).
Unlike typical approaches, which generate points

in Pi for i = α, α + 1, . . . , β, here we proceed in-
versely. First, we generate an (almost) uniformly dis-
tributed random point p ∈ Pα, which is easy since
Pα = B(c, 2α/d) ⊆ B(c, r). Then we use p to start
a random walk in Pα, Pα+1, Pα+2 and so on, until
we obtain a uniformly distributed point in Pβ . We
perform N random walks starting from this point to
generate N (almost) uniformly distributed points in
Pβ and then count how many of them fall into Pβ−1.
This yields an estimate of vol(Pβ)/vol(Pβ−1). Next
we keep the points that lie in Pβ−1, and use them to
start walks so as to gather a total of N (almost) uni-
formly distributed points in Pβ−1. We repeat until we
compute the last ratio vol(Pα+1)/vol(Pα).
The implementation is based on a data structure D

that stores the random points. In step i > α, com-
pute vol(Pβ−i)/vol(Pβ−i−1) and D contains N ran-
dom points in Pβ−i+1 from the previous step. The
computation in this step consists in removing from D
the points not in Pβ−i, then sampling N − size(D)
new points in Pβ−i and, finally, counting how many
lie in Pβ−i−1. Testing whether such a point lies in Pi

reduces to testing whether p ∈ B(2i/d) because p ∈ P .
One main advantage of our method is that it creates

partial generations of random points for every new
body Pi, as opposed to having always to generate N
points. This has a significant effect on runtime since
it reduces it by a constant raised to β.

Complexity. Our algorithm is in the family of algo-
rithms using a sequence of concentric balls, like [7].
Assuming B(1) ⊆ P ⊆ B(ρ), the algorithm of [7]
returns an estimation of vol(P ), which lies between
(1 − ϵ)vol(P ) and (1 + ϵ)vol(P ) with probability ≥
3/4, making O

(
n4ρ2

ϵ2 lnn ln ρ ln2 n
ϵ

)
= O∗(n4ρ2) or-

acle calls with probability ≥ 9/10, by setting N =
400ϵ−2d log d, which we shall also use here.

Lemma 1 Given H-polytope P , the volume algo-
rithm performs k phases of rounding in O∗(d3mk),
and approximates vol(P ) in O(md3 log d log(ρ/r))
arithmetic operations, assuming ϵ > 0 is fixed, where
r and ρ denote the radii of the largest inscribed ball
and of the co-centric ball covering P .

Proof. We generate d log(ρ/r) balls. In each ball in-
tersected with P , we generate ≤ N = 400ϵ−2d log d
random points, in W = O(d) steps of CDHR for each.
The amortized complexity of a CDHR step is O(m),
since k CDHR steps require O(dm + (k − 1)m + kd)
ops and d = O(m), k = Ω(d).
Each rounding iteration runs in O(nd2(ε−1+ln d+

ln ln(n))), where n stands for the number of sampled

points, and ε is the approximation of the minimum
volume ellipsoid of Eq. (1). We generate n = O(d)
points, each in O(m) arithmetic operations. Cholesky
decompositions takes O(d3). Hence, rounding runs in
O∗(d3mk), where ε is fixed. □

3 Experiments

We implement and experimentally test2 the above
algorithms and methods in the software package
VolEsti. The code is open-source (sourceforge), in
C++. It relies on CGAL 3 for its d-dimensional kernel
to represent objects such as points and vectors, for
its LP solver, for the approximate minimum ellipsoid,
and for generating random points in balls. Arithmetic
uses the double data type of C++. The following
polytopes are tested:

• cube-d: {x = (x1, . . . , xd) |xi ≤ 1, xi ≥ −1, xi ∈
R for all i = 1, . . . , d},

• cross-d: cross polytope, the dual of cube, i.e.
conv({−ei, ei, i = 1, . . . , d}),

• rh-d-m: polytopes constructed by randomly
choosing m hyperplanes tangent to the sphere,

• ccp-n: complete cut polytopes on n vertices,

• Fm-d: one facet of the metric polytope [3] in Rd,

• ∆-d: the d-dimensional simplex conv({ei, for i =
0, 1, . . . , d}),

• ∆-d-d: product of two simplices, i.e {(p, p′) ∈
R2d | p ∈ ∆-d, p′ ∈ ∆-d},

• s-cube-d: {x = (x1, . . . , xd) |x1 ≤ 100, x1 ≥
−100, xi ≤ 1, xi ≥ −1, xi ∈ R i = 2, . . . , d}, ro-
tated by 30o in the plane defined by the first two
coordinate axes,

• B(n): the n-Birkhoff polytope (defined below).

Each experiment is repeated 100 times. We keep
track of the min and the max computed values, the
mean µ, the standard deviation and the mean er-
ror of approximation (vol(P )-µ)/vol(P ). Our method
is more accurate than indicated by the theoretical
bounds in [7]. In particular, in all experiments all
computed values are contained in the interval ((1 −
ϵ)vol(P ), (1+ ϵ)vol(P )), while theory guarantees only
75% of them. In general our experimental results
show that our software can approximate the volume
of general polytopes up to dimension 100 in less than
2 hours with mean approximation error at most 2%
(cf. Table 1).
We set W = ⌊10+d/10⌋. Our experiments indicate

that, with this choice, (vol(P )-µ)/vol(P ) is < 2% up
to d = 100 (Table 1). Moreover, for higher W the im-
provement in accuracy is not significant, which sup-
ports the claim that asymptotic bounds are unrealis-
tically high.

2All timings are on an Intel Core i5-2400 3.1GHz, 6MB L2
cache, 8GB RAM, 64-bit Debian GNU/Linux.

3Comp. geometry algorithms library, http://www.cgal.org



30th European Workshop on Computational Geometry, 2014

P d m vol(P ) N µ [min, max] std-dev vol(P )−µ
vol(P )

VolEsti exact

(sec) (sec)

cube-10 10 20 1.024E+03 9210 1.027E+03 [0.950E+03,1.107E+03] 3.16E+001 0.0030 0.42 0.01
cube-15 15 30 3.277E+04 16248 32477.93 [3.037E+04,3.436E+04] 941.68 0.0088 1.44 0.40
cube-20 20 40 1.048E+06 23965 1.046E+06 [0.974E+06,1.116E+06] 3.15E+004 0.0028 4.62 swap
cube-50 50 100 1.126E+15 78240 1.125E+15 [1.003E+15,1.253E+15] 4.39E+013 0.0007 117.51 swap

cube-100 100 200 1.268E+30 184206 1.278E+30 [1.165E+30,1.402E+30] 4.82E+028 0.0081 1285.08 swap
∆-50 60 61 1.202E-082 98264 1.21E-082 [1.07E-082,1.38E-082] 6.44E-084 0.0068 183.12 0.01

∆-100 100 101 1.072E-158 184206 1.07E-158 [9.95E-159,1.21E-158] 4.24E-160 0.0032 907.52 0.02
∆-40-40 80 82 1.502E-096 140224 1.50E-096 [1.32E-096,1.70E-096] 7.70E-098 0.0015 452.05 0.01
∆-50-50 100 102 1.081E-129 184206 1.10E-129 [1.01E-129,1.19E-129] 4.65E-131 0.0154 919.01 0.02
cross-10 10 1024 2.822E-04 9210 2.821E-04 [2.693E+04,2.944E+04] 5.15E-06 0.0003 1.58 388.50
cross-18 18 262144 4.09E-011 20810 4.027E-11 [3.97E-11,4.08E-11] 5.58E-013 0.0165 5791.06 —

Fm-5 10 25 7.110E+03 9210 7.116E+03 [6350.72,8103.78] 3.01E+002 0.0009 0.69 0.02
Fm-6 15 59 2.861E+05 16248 2.850E+05 [241851.70,321864.30] 1.55E+004 0.0038 3.24 swap
ccp-5 10 56 2.312E+00 9210 2.326E+00 [2.159411,2.527959] 7.43E-02 0.0064 0.49 38.23
ccp-6 15 368 1.346E+00 16248 1.346E+00 [1.264474,1.451714] 3.81E-02 0.0002 6.14 swap

B9 64 81 2.60E-33 425869 2.62E-33 [2.33E-33, 2.83E-33] 3.01E-42 0.0098 1674.09 8 days
B10 81 100 8.78E-46 569520 8.34E-46 [8.097E-46, 9.19E-46] 3.08E-56 0.0189 3382.46 6160 days
B11 100 121 ??? 736827 1.14E-60 [9.61E-61, 1.21E-60] 6.90E-62 ??? 6204.84 –
B12 121 144 ??? 928465 5.54E-78 [4.41E-78, 6.39E-78] 7.24E-79 ??? 11322.23 –

s-cube-10 10 20 1.024E+05 9210 5.175E+04 [2.147E+04,1.228E+05] 18286.0 0.4946 0.69 0.01
r-s-cube-10 10 20 1.024E+05 9210 1.029E+05 [8.445E+04,1.149E+05] 5312.3 0.0050 0.71 0.01

s-cube-20 20 40 1.049E+08 23965 4.193E+07 [2.497E+07,7.259E+07] 9268346.0 0.6001 5.59 swap
r-s-cube-20 20 40 1.049E+08 23965 1.040E+08 [8.458E+07,1.163E+08] 6615707.0 0.0084 6.70 swap

Table 1: Overall results; ϵ = 1, “swap” indicates it ran out of memory and started swapping; r-s-cube denotes that we use
rounding; “???” indicates that the exact volume is unknown; “–” indicates it didn’t terminate after at least 10h. VINCI

is used for exact volume computation except Birkhoff polytopes where birkhoff is used instead.

To experimentally test the effect of rounding we
construct skinny hypercubes s-cube-d. We rotate
them to avoid CDHR taking unfair advantage of the
degenerate situation where the long edge is parallel to
an axis. Table 1 shows that rounding reduces approx-
imation error by 2 orders of magnitude.

We test against VINCI 1.0.5 [2] (Table 1). For all
inputs, there is a threshold dimension for which VINCI

takes too much time (e.g. > 4 hrs for cube-20) and
consumes all system memory, thus starts swapping.

Testing the most relevant approximation method
implemented in Matlab (cf. Sect. 1) with default op-
tions and ϵ = 0.1, our implementation runs at least
2 times faster and returns significantly more accurate
results, e.g. from 4 to 100 times smaller error on cube-
d when d > 70, and from 5 to 80 times on Birkhoff
polytopes (Table 1). For example, for B10 Matlab

and VolEsti compute vol(P )−µ

vol(P )
= 0.1207 and 0.0207

in 3437.74 and 2660.20 secs respectively and for cube-

100 compute vol(P )−µ

vol(P )
= 0.0357 and 0.0081 in 3805.37

and 1285.08 secs respectively.

The n-th Birkhoff polytope Bn = {x ∈ Rn×n | xij ≥
0,

∑
i xij = 1,

∑
j xij = 1, 1 ≤ i ≤ n}, is also

described as the polytope of the perfect matchings
of the complete bipartite graph Kn,n. In [1], they
present a complex-analytic method for this volume,
implemented in package birkhoff, which has man-
aged to compute vol(B10) in parallel execution, which
corresponds to a single processor running at 1 GHz for
almost 17 years. Our software computes the volume
of polytopes up to B10 in < 1 hour with mean error
of ≤ 2% (Table 1). We decrease ϵ and obtain an error
of 0.7% for vol(B10), in 6 hours, i.e., with two correct
digits. More interestingly, using ϵ = 0.5 we compute
an approximation as well as an interval of values for
vol(B11), vol(B12), whose exact values are unknown
(Table 1).

References

[1] M. Beck and D. Pixton. The Ehrhart polynomial of
the Birkhoff polytope. DCG, 30(4):623–637, 2003.

[2] B. Büeler, A. Enge, and K. Fukuda. Exact vol-
ume computation for polytopes: A practical study.
In Polytopes: Combinatorics and Computation, vol-
ume 29, pages 131–154. Birkhäuser, 2000.

[3] A. Deza, M. Deza, and K. Fukuda. On skeletons,
diameters and volumes of metric polyhedra. LNCS,
pages 112–128. Springer, 1996.

[4] M. Dyer, A. Frieze, and R. Kannan. A random
polynomial-time algorithm for approximating the
volume of convex bodies. J. ACM, 38(1):1–17, 1991.

[5] M.E. Dyer and A.M. Frieze. On the complexity of
computing the volume of a polyhedron. SIAM J.
Comput., 17(5):967–974, 1988.

[6] I.Z. Emiris and V. Fisikopoulos. Efficient random
walk methods for approximating polytope volume,
2013. In arXiv:1312.2873.

[7] R. Kannan, L. Lovász, and M. Simonovits. Random

walks and an O∗(n5) volume algorithm for convex
bodies. Rand. Struct. Algor., 11:1–50, 1997.

[8] L.G. Khachiyan. Rounding of polytopes in the real
number model of computation. Math. Oper. Res.,
21(2):307–320, 1996.

[9] L. Lovász and I. Deák. Computational results of an
O(n4) volume algorithm. European J. Operational
Research, 216(1):152–161, 2012.

[10] L. Lovász and S. Vempala. Simulated annealing in

convex bodies and an O∗(n4) volume algorithm. J.
Comp. Syst. Sci., 72(2):392–417, 2006.

[11] M. Simonovits. How to compute the volume in high
dimension? Math. Program., pages 337–374, 2003.

[12] R.L. Smith. Efficient Monte Carlo procedures for gen-
erating points uniformly distributed over bounded re-
gions. Operations Research, 32(6):1296–1308, 1984.


	Introduction
	The volume algorithm
	Experiments

