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Abstract

We present a new software for computing Newton polytopes of resultant and discriminant
polynomials. We illustrate its use with a number of examples.

1 Introduction

We work with Laurent polynomials having �xed support sets Ai ⊂ Zn in n unknowns x =
(x1, x2, . . . , xn) over an algebraically closed �eld K i.e. fi(x) =

∑
a∈Ai

ci,ax
a, ci,a 6= 0. The

Newton polytope of a polynomial f , denoted by N(f), is the convex hull of its support set.

Sparse resultant. Sparse, or toric, resultants, or simply resultants, study systems such as:

f0(x) = f1(x) = · · · = fn(x) = 0. (1)

Let A0, . . . , An ⊂ Zn be the respective supports, assuming they form an essential family [Stu94,
Sec.1]. Polynomials f0(x) . . . , fn(x) are de�ned on the Ai's with symbolic coe�cients ci,a, i =
0, . . . , n, a ∈ Ai. Given A0, . . . , An we de�ne the sparse resultant of system (1) to be the unique
(up to sign) irreducible integer polynomial RA0,...,An in the ci,a, which vanishes i� (1) has a
solution in (K∗)n. The sparse resultant has

∑n
i=0 |Ai| variables, however the intrinsic dimension

of its Newton polytope, called resultant polytope, is [GKZ94]: dim(N(R)) =
∑n

i=0 |Ai| − 2n− 1.

A-discriminant. Let A be a subset of Zn s.t. it generates Zn as an a�ne lattice and f =∑
a∈A cax

a be a generic polynomial w.r.t. A, i.e. with generic coe�cients ca 6= 0. The A-
discriminant is the unique (up to sign) irreducible integer polynomial ∆A in the unknowns ca
which vanishes i� f has a multiple root in (K∗)n, namely

∃x∗ ∈ (K∗)n s.t. f(x∗) =
∂f

∂x1
(x∗) = · · · = ∂f

∂xn
(x∗) = 0. (2)

∆A is homogeneous, and quasi-homogeneous relative to the weight de�ned by any vector in
the rowspan of the (n + 1) × m,m = |A| > n + 1, integer matrix (also called A by abuse of
notation) whose �rst row consists of ones, and whose columns are (1, a), a ∈ A. The intrinsic
dimension of its Newton polytope, called discriminant polytope, is therefore |A| − n− 1.
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The Cayley trick. Given pointsets A0, . . . , An ⊂ Zn, we de�ne the pointset

A :=

n⋃
i=0

(Ai × {ei}) ⊂ Z2n, (3)

where e0, . . . , en form an a�ne basis of Rn: e0 = (0, . . . , 0), ei = (0, . . . , 0, 1, 0, . . . , 0), i =
1, . . . , n. The regular tight mixed subdivisions of Minkowski sum A0 + · · ·+An are in bijection
with the regular triangulations of A.

2 Algorithms for resultant and (reduced) discriminant polytopes

Our software ResPol computes (projections of) resultant polytopes, and (reduced) discriminant
polytopes. It is written in C++, uses the CGAL library 1, principally the experimental CGAL
package triangulation, and is publicly available at http://respol.sourceforge.net. It o�ers
binary �les for 32 and 64-bit Linux systems. To compile ResPol, e.g. on other architectures, one
may consult the README �le available with our distribution, once CGAL is installed.

Resultant polytope. An output-sensitive algorithm and an implementation for the resultant
polytope are presented in [EFKP12]. Its complexity is polynomial in the number of polytope
vertices and the number of full-dimensional cells in the triangulation of the polytope constructed
by the algorithm. The method de�nes a vertex oracle which, given direction c ∈ R|A|, computes
vertex v ∈ N(R) s.t. cT v is maximized. The oracle is implemented by computing a regular
triangulation of the Cayley set A. Then v equals the exponent ρ of the extreme monomial in
[Stu94, Thm.2.1]. Using the oracle, the entire polytope can be reconstructed: Initialize with the
convex hull of a su�cient number of vertices for the hull to be full-dimensional. Given a convex
polytope, c is the outer normal to a facet F . The method either �nds a new vertex and removes
F (and possibly other facets), or a vertex on the hyperplane of F , which con�rms that F is
valid, so is never tested again. One reconstruction method is implemented in [Hug06] given a
vertex oracle. Our implementation is optimized for vertex oracles that compute triangulations.

Example 1. Let A0 = {0, 1, 3} and A1 = {0, 3, 4} and consider two generic, relative to these
supports, univariate f0 = a0 +a1x+a2x

3, f1 = b0 + b1x
3 + b2x

4. Their resultant is the Sylvester
resultant of f0, f1. To compute its polytope, prepare text �le file.txt:

1 dimension of the input supports A0, A1

3 3 | cardinalities of the Ai's, �|� implies no projection
[[0],[1],[3],[0],[3],[4]] joint list of all support points

The third line contains the points ofA0 followed by those ofA1. Running command ./res_enum_d
< file.txt, the set of the resultant polytope vertices: (0, 3, 1, 1, 2, 0), (0, 0, 4, 3, 0, 0), (3, 0, 1, 0, 3,

0), (4, 0, 0, 0, 0, 3), (0, 4, 0, 1, 0, 2), (3, 1, 0, 0, 1, 2), are written in the standard output. If �3 3 |

0 3� was used as second line then the result would be the orthogonal projection of the resultant
polytope in the �rst and fourth coordinate (counting starts at 0).

Discriminant polytope. We extend ResPol to compute (reduced) discriminant polytopes
following two approaches. The �rst focuses on reduced discriminants. By employing the Horn-
Kapranov parameterization, the problem is reduced to implicitization. The Newton polytope of
the implicit equation of the parameterization, or implicit polytope, is computed as the projection
of a resultant polytope [EKKB13] and it contains (a translate of) the reduced discriminant
polytope. This approach is discussed below.

The second approach de�nes vertex oracles for the discriminant polytope and uses Beneath-
Beyond. There are several procedures to get a vertex oracle. In [Rin13] is given a procedure and

1CGAL: Computational Geometry Algorithms Library. http://www.cgal.org.
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an implementation (tropli) for such an oracle using tropical geometry: tropli, given direction
c ∈ R|A|, computes a vertex v ∈ N(∆A) s.t. cT v is minimized. Respol can use this oracle to
reconstruct the discriminant polytope. One can also de�ne a vertex oracle using the η-vectors
from [GKZ94, ch.11], Such an oracle involves the computation of (normalized) volumes of lower
dimensional simplices, and has not yet been implemented in ResPol.

Regarding the �rst approach, given A, let B = (bij) ∈ Zn×(m−n−1) be a matrix whose column
vectors are a basis of the integer kernel of A. Then B is of full rank. We assume that its maximal
minors have unit gcd (i.e. the rows generate Zm−n−1). Since the �rst row of A equals (1, . . . , 1),
the columns of B add up to 0. Set d = m−n−1. Let y1, . . . , yd be homogenous parameters and
set y1 = 1 so as to dehomogenize the parameterization. We denote by li, i = 1, . . . ,m the inner
product of the i-th row of B and the parameter vector (1, y2, . . . , yd): li :=

∑d
j=1 bijyj . The li

correspond bijectively to the coe�cients ca, a ∈ A of f and are thus the discriminant variables.
The, so called, Horn-Kapranov parametrization [GKZ94, Kap91], is de�ned as:

xj =
m∏
i=1

l
bij
i , j = 1, 2, . . . , d. (4)

The implicit equation of (the closure of) its image is a polynomial ∆B in x := (x1, . . . , xd),
called the reduced discriminant, which is the dehomogenized version of ∆A; it is obtained from
∆A by specializing some n + 1 of its variables so as to remove the n + 1 quasi-homogeneities.
It follows that N(∆B) is the projection of N(∆A) in a space of dimension equal to its intrinsic
dimension and retains the combinatorial structure of N(∆A).

Example 2. Let A = {0, 1, 2, 3, 4} and f = c0 + c1t
1 + c2t

2 + c3t
3 + c4t

4 be a generic quartic.

A =

(
1 1 1 1 1
0 1 2 3 4

)
, B =


3 2 1
−4 −3 −2
0 0 1
0 1 0
1 0 0

 .

Here m = 5, n = 1, d = 3 and l1 = 3 + 2y2 + y3, l2 = −4− 3y2 − 2y3, l3 = y3, l4 = y2, l5 = 1, and
the Horn-Kapranov parameterization is:

x1 =
(3 + 2y2 + y3)

3

(−4− 3y2 − 2y3)4
, x2 =

(3 + 2y2 + y3)
2y2

(−4− 3y2 − 2y3)3
, x3 =

(3 + 2y2 + y3)y3
(−4− 3y2 − 2y3)2

. (5)

We prefer to have rational parameterizations with a single monomial in the denominator because
this facilitates the computation of the implicit polytope. We introduce a new parameter y4
expressing the common denominator in (5) and obtain the parameterization

x1 =
(3 + 2y2 + y3)

3

y44
, x2 =

(3 + 2y2 + y3)
2y2

y34
, x3 =

(3 + 2y2 + y3)y3
y24

, y4 = −4− 3y2 − 2y3,

from which we de�ne the polynomials

F0 : = x1y
4
4 − (3 + 2y2 + y3)

3, F1 := x2y
3
4 − (3 + 2y2 + y3)

2y2,

F2 : = x3y
2
4 − (3 + 2y2 + y3)y3, F3 := y4 + 4 + 3y2 + 2y3,

whose supports are given as input to ResPol. The above procedure is demonstrated in the Maple
�le horn_example2.mw available with our distribution. Then, we prepare the input file.txt:

3

11 7 4 4 | 0 11 18

[[0, 0, 4], [0, 0, 0], [1, 0, 0], [0, 1, 0], [2, 0, 0], [1, 1, 0], [0, 2, 0],

[3, 0, 0], [2, 1, 0], [1, 2, 0], [0, 3, 0], [0, 0, 3], [1, 0, 0], [2, 0, 0],

[1, 1, 0], [3, 0, 0], [2, 1, 0], [1, 2, 0], [0, 0, 2], [0, 1, 0], [1, 1, 0],

[0, 2, 0], [0, 0, 1], [0, 0, 0], [1, 0, 0], [0, 1, 0]]
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The second line after `|' instructs ResPol to project to the space de�ned by x1, x2, x3. Executing
./res_enum_d < file.txt, we obtain the vertices (0, 0, 12), (0, 8, 0), (6, 0, 0), (0, 0, 0) in the
standard output. They de�ne a polytope containing a translate of N(∆B).

To compute the discriminant polytope using tropli we prepare a text�le file.txt:

1

5 0 |
[[0], [1], [2], [3], [4]]

where the zero after the cardinality 5 of the support in the second line is needed because ResPol
expects the number of supports to be one more than the dimension. Executing the command
./res_enum_d -d < file.txt, we obtain the vertices of N(∆A): (1, 0, 4, 0, 1), (0, 3, 0, 3, 0),
(0, 4, 0, 0, 2), (0, 2, 3, 0, 1), (0, 2, 2, 2, 0), (2, 0, 0, 4, 0), (3, 0, 0, 0, 3), (1, 0, 3, 2, 0) in the standard
output. The corresponding vertices of N(∆B) may be computed as follows: By renaming the
li's as ci's we have from (5) that x1 = c30c

−4
1 c4, x2 = c20c

−3
1 c3, x3 = c0c

−2
1 c2, which gives the

correspondence: (κ, λ, µ) 7−→ (3κ+ 2λ+ µ,−4κ− 3λ− 2µ, µ, λ, κ), between the vertices of ∆B

and ∆A. Moreover, this yields the correspondence: (a1, a2, a3, a4, a5) 7−→ (a5, a4, a3) between
the vertices of ∆A and ∆B. Hence, from the set of vertices of N(∆A) above, we obtain the
vertices of N(∆B): (0, 2, 3), (0, 2, 2), (1, 0, 3), (1, 0, 4), (0, 3, 0), (0, 4, 0), (3, 0, 0), (2, 0, 0), which
are all contained in the polytope de�ned by the set of vertices predicted by ResPol.
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