
DOI: 10.1142/S0218195913600108

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

International Journal of Computational Geometry

& Applications
Vol. 23, Nos. 4 & 5 (2013) 397–423
c© World Scientific Publishing Company

AN ORACLE-BASED, OUTPUT-SENSITIVE ALGORITHM

FOR PROJECTIONS OF RESULTANT POLYTOPES

IOANNIS Z. EMIRIS∗ and VISSARION FISIKOPOULOS†

Department of Informatics and Telecommunications

University of Athens, Athens, 15784, Greece
∗emiris@di.uoa.gr
†vissarion@di.uoa.gr

CHRISTOS KONAXIS

Archimedes Center for Modeling, Analysis and Computation (ACMAC)

University of Crete
Heraklio, 71409, Greece

ckonaxis@acmac.uoc.gr

LUIS PEÑARANDA

IMPA – Instituto Nacional de Matemática Pura e Aplicada

Rio de Janeiro, 22460-320, Brazil

luisp@impa.br

Received 30 September 2012

Revised 30 March 2013
Communicated by Gill Barequet

ABSTRACT

We design an algorithm to compute the Newton polytope of the resultant, known as
resultant polytope, or its orthogonal projection along a given direction. The resultant

is fundamental in algebraic elimination, optimization, and geometric modeling. Our al-
gorithm exactly computes vertex- and halfspace-representations of the polytope using

an oracle producing resultant vertices in a given direction, thus avoiding walking on

the polytope whose dimension is α − n − 1, where the input consists of α points in
Zn. Our approach is output-sensitive as it makes one oracle call per vertex and per
facet. It extends to any polytope whose oracle-based definition is advantageous, such as
the secondary and discriminant polytopes. Our publicly available implementation uses
the experimental CGAL package triangulation. Our method computes 5-, 6- and 7-

dimensional polytopes with 35K, 23K and 500 vertices, respectively, within 2hrs, and
the Newton polytopes of many important surface equations encountered in geometric

modeling in < 1sec, whereas the corresponding secondary polytopes are intractable. It
is faster than tropical geometry software up to dimension 5 or 6. Hashing determinantal
predicates accelerates execution up to 100 times. One variant computes inner and outer

397

http://dx.doi.org/10.1142/S0218195913600108

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

398 I. Z. Emiris et al.

approximations with, respectively, 90% and 105% of the true volume, up to 25 times
faster.

Keywords: General dimension; convex hull; regular triangulation; secondary polytope;

resultant; CGAL implementation; experimental complexity.

1. Introduction

Given pointsets A0, . . . , An ⊂ Zn, we define the so called Cayley pointset

A :=

n⋃
i=0

(Ai × {ei}) ⊂ Z2n, (1)

where e0, . . . , en form an affine basis of Rn: e0 is the zero vector, ei =

(0, . . . , 0, 1, 0, . . . , 0), i = 1, . . . , n. Clearly, |A| = |A0|+ · · ·+ |An|, where | · | denotes

cardinality. By Cayley’s trick (Proposition 2) the regular tight mixed subdivisions

of the Minkowski sum A0 + · · ·+An are in bijection with the regular triangulations

of A, which are in bijection with the vertices of the secondary polytope Σ(A) (see

Sec. 2).

The Newton polytope of a polynomial is the convex hull of its support, i.e. the

exponent vectors of monomials with nonzero coefficient. It subsumes the notion of

degree for sparse multivariate polynomials by providing more precise information

(see Figs. 1 and 3). Given n + 1 polynomials in n variables, with fixed supports

Ai and symbolic coefficients, their sparse (or toric) resultant R is a polynomial in

these coefficients which vanishes exactly when the polynomials have a common root

(Definition 1). The resultant is the most fundamental tool in elimination theory,

it is instrumental in system solving and optimization, and is crucial in geometric

modeling, most notably for changing the representation of parametric hypersurfaces

to implicit.

The Newton polytope of the resultant N(R), or resultant polytope, is the object

of our study; it is of dimension |A| − 2n − 1 (Proposition 4). We further consider

the case when some of the input coefficients are not symbolic, hence we seek an

orthogonal projection of the resultant polytope. The lattice points in N(R) yield a

superset of the support of R; this reduces implicitization1,2 and computation of R
to sparse interpolation (Sec. 2). The number of coefficients of the n+1 polynomials

ranges from O(n) for sparse systems, to O(nddn), where d bounds their total de-

gree. In system solving and implicitization, one computes R when all but O(n) of

the coefficients are specialized to constants, hence the need for resultant polytope

projections.

The resultant polytope is a Minkowski summand of Σ(A), which is also of dimen-

sion |A|− 2n− 1. We consider an equivalence relation defined on the Σ(A) vertices,

where the classes are in bijection with the vertices of the resultant polytope. This

yields an oracle producing a resultant vertex in a given direction, thus avoiding to

compute Σ(A), which typically has much more vertices than N(R). This is known

in the literature as an optimization oracle since it optimizes inner product with a

given vector over the (unknown) polytope.

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

An Algorithm for Projections of Resultant Polytopes 399

3

2

1 2 3 5

5

f(x1, x2) = 8x2 + x1x2 − 24x22 −
16x21 + 220x21x2 − 34x1x

2
2 −

84x31x2+6x21x
2
2−8x1x

3
2+8x31x

2
2+

8x31 + 18x32

N(f)

1

Fig. 1. The Newton polytope of a polynomial of degree 5 in two variables. Every monomial cor-

responds to an integral point on the plane. The dashed triangle is the corresponding polytope of
the dense polynomial of degree 5.

Example 1. [The bicubic surface] A standard benchmark in geometric modeling

is the implicitization of the bicubic surface, with n = 2, defined by 3 polynomials in

two parameters. The input polynomials have supports Ai ⊂ Z2, i = 0, 1, 2, with car-

dinalities 7, 6, 14, respectively; the total degrees are 3, 3, 6, respectively. The Cayley

set A ⊂ Z4, constructed as in Eq. (1), has 7 + 6 + 14 = 27 points. It is depicted in

the following matrix, with coordinates as columns, where the supports from differ-

ent polynomials and the Cayley coordinates are distinguished. By Proposition 4 it

follows that N(R) has dimension |A| − 4− 1 = 22; it lies in R27.

0 0 1 0 2 0 3 0 0 1 2 0 3 0 0 1 0 1 2 1 2 1 2 3 2 3 3 }
support

0 1 0 2 0 3 0 0 1 0 0 3 0 0 1 0 2 1 0 2 1 3 2 1 3 2 3

0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }
Cayley

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Implicitization requires eliminating the two parameters to obtain a constraint

equation over the symbolic coefficients of the polynomials. Most of the coefficients

are specialized except for 3 variables, hence the sought for implicit equation of the

surface is trivariate and the projection of N(R) lies in R3.

TOPCOM3 needs more than a day and 9GB of RAM to compute 1, 806, 467 reg-

ular triangulations of A, corresponding to 29 of the vertices of N(R), and crashes

before computing the entire N(R). Our algorithm yields the projected vertices

{(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 0, 9), (0, 18, 0), (18, 0, 0)} of the 3-dimensional projec-

tion of N(R), which is the Newton polytope of the implicit equation, in 30msec.

Given this polytope, the implicit equation of the bicubic surface is interpolated in

42 seconds.4 It is a polynomial of degree 18 containing 715 terms which corresponds

exactly to the lattice points contained in the predicted polytope.

Our main contribution is twofold. First, we design an oracle-based algorithm

for computing the Newton polytope of R, or of specializations of R. The algorithm

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

400 I. Z. Emiris et al.

utilizes the Beneath-and-Beyond method to compute both vertex (V) and halfspace

(H) representations, which are required by the algorithm and may also be relevant

for the targeted applications. Its incremental nature implies that we also obtain

a triangulation of the polytope, which may be useful for enumerating its lattice

points. The complexity is proportional to the number of output vertices and facets;

in this sense, the algorithm is output sensitive. The overall cost is asymptotically

dominated by computing as many regular triangulations of A (Theorem 1). We

work in the space of the projected N(R) and revert to the high-dimensional space

of Σ(A) only if needed. Our algorithm readily extends to computing Σ(A), the

Newton polytope of the discriminant and, more generally, any polytope that can be

efficiently described by a vertex oracle or its orthogonal projection. In particular,

it suffices to replace our oracle by the oracle in Ref. 5 to obtain a method for

computing the discriminant polytope.

Second, we describe an efficient, publicly available implementation based on

CGAL6 and its experimental package triangulation. Our method computes in-

stances of 5-, 6- or 7-dimensional polytopes with 35K, 23K or 500 vertices, re-

spectively, in < 2hr. Our code is faster up to dimensions 5 or 6, compared to a

method computing N(R) via tropical geometry, implemented in the Gfan library.7

In higher dimensions Gfan seems to perform better although neither implementation

can compute enough instances for a fair comparison. Our code, in the critical step

of computing the convex hull of the resultant polytope, uses triangulation. On

our instances, triangulation, compared to state-of-the-art software lrs, cdd, and

polymake, is the fastest together with polymake. We factor out repeated computa-

tion by reducing the bulk of our work to a sequence of determinants: this is often

the case in high-dimensional geometric computing. Here, we exploit the nature of

our problem and matrix structure to capture the similarities of the predicates, and

hash the computed minors which are needed later, to speedup subsequent deter-

minants. A variant of our algorithm computes successively tighter inner and outer

approximations: when these polytopes have, respectively, 90% and 105% of the true

volume, runtime is reduced up to 25 times. This may lead to an approximation

algorithm.

Previous work. Sparse (or toric) elimination theory was introduced in Ref. 8.

They show that N(R), for two univariate polynomials with k0+1, k1+1 monomials,

has
(
k0+k1
k0

)
vertices and, when both ki ≥ 2, it has k0k1 +3 facets. In Sec. 6 of Ref. 9

is proven that N(R) is 1-dimensional if and only if |Ai| = 2, for all i, the only pla-

nar N(R) is the triangle, whereas the only 3-dimensional ones are the tetrahedron,

the square-based pyramid, and the resultant polytope of two univariate trinomials;

we compute an affinely isomorphic instance of the latter (Fig. 2(b)) as the resul-

tant polytope of three bivariate polynomials. Following Theorem 6.2 of Ref. 9, the

4-dimensional polytopes include the 4-simplex, some N(R) obtained by pairs of

univariate polynomials, and those of 3 trinomials, which have been investigated

with our code in Ref. 10. The maximal (in terms of number of vertices) such

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

An Algorithm for Projections of Resultant Polytopes 401

polytope we have computed has f-vector (22, 66, 66, 22) (Fig. 2(c)). Furthermore,

Table 2 presents some typical f-vectors of 4, 5, 6 dimensional projections of resultant

polytopes.

A lower bound on the volume of the Newton polytope of the discriminant poly-

nomial that refutes a conjecture in algebraic geometry is presented in Ref. 11.

A direct approach for computing the vertices of N(R) might consider all vertices

of Σ(A) since the vertices of the former are equivalence classes over the vertices of

the latter. Its complexity grows with the number of vertices of Σ(A), hence it is

impractical (Example 1).

The computation of secondary polytopes has been efficiently implemented in

TOPCOM,3 which has been the reference software for computing regular or all

triangulations. The software builds a search tree with flips as edges over the vertices

of Σ(A). This approach is limited by space usage. To address this, reverse search was

proposed,12 but the implementation cannot compete with TOPCOM. The approach

based on computing Σ(A) is not efficient for computing N(R). For instance, in

implicitizing parametric surfaces with up to 100 terms, which includes all common

instances in geometric modeling, we compute the Newton polytope of the equations

in less than 1sec, whereas Σ(A) is intractable (see e.g. Example 1).

In Ref. 13 they describe all Minkowski summands of Σ(A). In Ref. 14 is defined

an equivalence class over Σ(A) vertices having the same mixed cells. The classes

map in a many-to-one fashion to resultant vertices; our algorithm exploits a stronger

equivalence relationship.

Tropical geometry is a polyhedral analogue of algebraic geometry and can be

viewed as generalizing sparse elimination theory. It gives alternative ways of recov-

ering resultant polytopes7 and Newton polytopes of implicit equations.2 See Sec. 5

for comparisons of the software in Ref. 7, called Gfan, with our software. In Ref. 5,

tropical geometry is used to define vertex oracles for the Newton polytope of the

discriminant polynomial.

In Ref. 15 there is a general implementation of a Beneath-and-Beyond based

procedure which reconstructs a polytope given by a vertex oracle. This implemen-

tation, as reported in Ref. 7, is outperformed by Gfan, especially in dimensions

higher than 5.

As is typical in computational geometry, the practical bottleneck is in com-

puting determinantal predicates. For determinants, the record bit complexity is

O(n2.697),16 while more specialized methods exist for the sign of general determi-

nants, e.g. Ref. 17. These results are relevant for higher dimensions and do not

exploit the structure of our determinantal predicates, nor the fact that we deal

with sequences of determinants whose matrices are not very different (this is for-

malized and addressed in Sec. 4). We compared linear algebra libraries LinBox18

and Eigen,19 which seem most suitable in dimension greater than 100 and medium

to high dimensions, respectively, whereas CGAL provides the most efficient deter-

minant computation for the dimensions to which we focus.

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

402 I. Z. Emiris et al.

The roadmap of the paper follows: Section 2 describes the combinatorics of

resultants, and the following section presents our algorithm. Section 4 overcomes

the bottleneck of Orientation predicates. Section 5 discusses the implementation,

experiments, and comparison with other software. We conclude with future work.

A preliminary version containing most of the presented results appeared in

Ref. 20. This extended version contains a more detailed presentation of the back-

ground theory of resultants, applications and examples, a more complete account

of previous work, omitted proofs, an improved description of the approximation

algorithm, an extended version of the hashing determinants method, and more ex-

perimental results.

2. Resultant Polytopes and their Projections

We introduce tools from combinatorial geometry21,22 to describe resultants.8,23 We

shall denote by vol(·) ∈ R the normalized Euclidean volume, (Rm)× the linear

m-dimensional functionals, Aff(·) the affine hull, and CH(·) the convex hull.

Let A ⊂ Rd be a pointset whose convex hull is of dimension d. For any triangu-

lation T of A, define vector φT ∈ R|A| with coordinate

φT (a) =
∑

σ∈T :a∈σ
vol(σ), a ∈ A, (2)

summing over all simplices σ of T having a as a vertex; Σ(A) is the convex hull of

φT for all triangulations T . Let Aw denote pointset A lifted to Rd+1 via a generic

lifting function w in (R|A|)×. Regular triangulations of A are obtained by projecting

the upper (or lower) hull of Aw back to Rd.

Proposition 1. [Ref. 8] The vertices of Σ(A) correspond to the regular triangu-

lations of A, while its face lattice corresponds to the poset of regular polyhedral

subdivisions of A, ordered by refinement. A lifting vector produces a regular trian-

gulation T (resp. a regular polyhedral subdivision of A) if and only if it lies in the

normal cone of vertex φT (resp. of the corresponding face) of Σ(A). The dimension

of Σ(A) is |A| − d− 1.

Let A0, . . . , An be subsets of Zn, P0, . . . , Pn ⊂ Rn their convex hulls, and P =

P0 + · · · + Pn their Minkowski sum. A Minkowski (maximal) cell of P is any full-

dimensional convex polytope B =
∑n
i=0Bi, where each Bi is a convex polytope with

vertices in Ai. Minkowski cells B,B′ =
∑n
i=0B

′
i intersect properly when Bi ∩B′i is

a face of both and their Minkowski sum descriptions are compatible, i.e. coincide on

the common face. A mixed subdivision of P is any family of Minkowski cells which

partition P and intersect properly. A Minkowski cell is i-mixed or vi-mixed, if it is

the Minkowski sum of n one-dimensional segments from Pj , j 6= i, and some vertex

vi ∈ Pi. In the sequel we shall call a Minkowski cell, simply cell.

Mixed subdivisions contain faces of all dimensions between 0 and n, the maxi-

mum dimension corresponding to cells. Every face of a mixed subdivision of P has

a unique description as Minkowski sum of Bi ⊂ Pi. A mixed subdivision is regular

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

An Algorithm for Projections of Resultant Polytopes 403

if it is obtained as the projection of the upper (or lower) hull of the Minkowski sum

of lifted polytopes Pwi
i := {(pi, wi(pi)) | pi ∈ Pi}, for lifting wi : Pi → R. If the

lifting function w := (w0 . . . , wn) is sufficiently generic, then the mixed subdivision

is tight, and
∑n
i=0 dimBi = dim

∑n
i=0Bi, for every cell. Given A0, . . . , An and the

affine basis {e0, . . . , en} of Rn, we define the Cayley pointset A ⊂ Z2n as in Eq. (1).

Proposition 2. [Cayley trick, Ref. 8] There exist bijections between: the regular

tight mixed subdivisions of P and the regular triangulations of A; the tight mixed

subdivisions of P and the triangulations of A; the mixed subdivisions of P and the

polyhedral subdivisions of A.

The family A0, . . . , An ⊂ Zn is essential if they jointly affinely span Zn and

every subset of cardinality j, 1 ≤ j < n, spans a space of dimension greater than

or equal to j. It is straightforward to check this property algorithmically and, if it

does not hold, to find an essential subset.9 In the sequel, the input A0, . . . , An ⊂ Zn
is supposed to be essential. Given a finite A ⊂ Zn, we denote by CA the space

of all Laurent polynomials of the form
∑
a∈A cax

a, ca 6= 0, x = (x1, . . . , xn). Sim-

ilarly, given A0, . . . , An ⊂ Zn we denote by
∏n
i=0 CAi the space of all systems of

polynomials

f0 = f1 = · · · = fn = 0, (3)

where fi =
∑
a∈Ai

ciax
a, cia 6= 0 The vector of all coefficients (. . . , ci,a, . . .) of (3)

defines a point in
∏n
i=0 CAi . Let Z ⊂ ∏n

i=0 CAi be the set of points corresponding

to systems (3) which have a solution in (C∗)n, and let Z be its closure. Z is an

irreducible variety defined over Q.

Definition 1. If codim(Z) = 1, then the sparse (or toric) resultant of the system

of polynomials (3) is the unique (up to sign) polynomial R in Z[ci,a : i = 0, . . . , n,

a ∈ Ai], which vanishes on Z. If codim(Z) > 2, then R = 1.

The resultant offers a solvability condition from which x has been eliminated,

hence it is also known as the eliminant. For n = 1, it is named after Sylvester.

For linear systems, it equals the determinant of the (n + 1) × (n + 1) coefficient

matrix. The discriminant of a polynomial F (x1, . . . , xn) is given by the resultant of

F, ∂F/∂x1, . . . , ∂F/∂xn.

The Newton polytope N(R) of the resultant is a lattice polytope called the resul-

tant polytope. The resultant has |A| = ∑n
i=0 |Ai| variables, hence N(R) lies in R|A|,

though it is of smaller dimension (Proposition 4). The monomials corresponding to

vertices of N(R) are the extreme resultant monomials.

Proposition 3. [Refs. 8 and 9] For a sufficiently generic lifting function w ∈
(R|A|)×, the w-extreme monomial of R, whose exponent vector maximizes the inner

product with w, equals

±
n∏
i=0

∏
σ

c
vol(σ)
i,vi

, (4)

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

404 I. Z. Emiris et al.

5 3

2

0

4 1

0

4

1

3

5
2

(a)

(b)

(c)

Fig. 2. (a) The secondary polytope Σ(A) of two triangles (dark, light grey) and one segment

A0 = {(0, 0), (1, 2), (4, 1)}, A1 = {(0, 1), (1, 0)}, A2 = {(0, 0), (0, 1), (2, 0)}, where A is defined as
in Eq. (1); vertices correspond to mixed subdivisions of the Minkowski sum A0 + A1 + A2 and

edges to flips between them (b) N(R), whose vertices correspond to the dashed classes of Σ(A).

Bold edges of Σ(A), called cubical flips, map to edges of N(R) (c) 4-dimensional N(R) of 3 generic
trinomials with f-vector (22, 66, 66, 22); figure made with polymake.

where σ ranges over all vi-mixed cells of the regular tight mixed subdivision S of P

induced by w, and ci,vi is the coefficient of the monomial xvi in fi.

Let T be the regular triangulation corresponding, via the Cayley trick, to S, and

ρT ∈ N|A| the exponent of the w-extreme monomial. For simplicity we shall denote

by σ, both a cell of S and its corresponding simplex in T . Then,

ρT (a) =
∑

a−mixed

σ∈T :a∈σ

vol(σ) ∈ N, a ∈ A, (5)

where simplex σ is a-mixed if and only if the corresponding cell is a-mixed in S.

Note that, ρT (a) ∈ N, since it is a sum of volumes of mixed simplices σ ∈ T , and

each of these volumes is equal to the mixed volume23 of a set of lattice polytopes,

the Minkowksi summands of the corresponding σ ∈ S. In particular, assuming that

σ ∈ S is i-mixed, it can be written as σ = σ0 + · · · + σn, σj ⊆ Aj , j = 0, . . . , n,

and vol(σ) = MV (σ0, . . . , σi−1, σi+1, . . . , σn), where MV denotes the mixed volume

function which is integer valued for lattice polytopes.23 Now, N(R) is the convex

hull of all ρT vectors.8,9

Proposition 3 establishes a many-to-one surjection from regular triangulations

of A to regular tight mixed subdivisions of P , or, equivalently, from vertices of

Σ(A) to those of N(R). One defines an equivalence relationship on all regular tight

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

An Algorithm for Projections of Resultant Polytopes 405

mixed subdivisions, where equivalent subdivisions yield the same vertex in N(R).

Thus, equivalent vertices of Σ(A) correspond to the same resultant vertex. Consider

w ∈ (R|A|)× lying in the union of outer-normal cones of equivalent vertices of Σ(A).

They correspond to a resultant vertex whose outer-normal cone contains w; this

defines a w-extremal resultant monomial. If w is non-generic, it specifies a sum of

extremal monomials in R, i.e. a face of N(R). The above discussion is illustrated

in Figs. 2(a) and 2(b).

Proposition 4. [Ref. 8] N(R) is a Minkowski summand of Σ(A), and both Σ(A)

and N(R) have dimension |A| − 2n− 1.

Let us describe the 2n+1 hyperplanes in whose intersection lies N(R). For this,

let M be the (2n+1)×|A|matrix whose columns are the points in the Ai, where each

a ∈ Ai is followed by the i-th unit vector in Nn+1. Then, the inner product of any

coordinate vector of N(R) with row i of M is: constant, for i = 1, . . . , n, and known,

and depends on i, for i = n+ 1, . . . , 2n+ 1, see Prop. 7.1.11 of Ref. 8. This implies

that one obtains an isomorphic polytope when projecting N(R) along 2n+1 points

in A which affinely span R2n; this is possible because of the assumption of essential

family. Having computed the projection, we obtain N(R) by computing the missing

coordinates as the solution of a linear system: we write the aforementioned inner

products as M [X V]T = C, where C is a known matrix and [X V]T is a transposed

(2n + 1) × u matrix, expressing the partition of the coordinates to unknown and

known values, where u is the number of N(R) vertices. If the first 2n+ 1 columns

of M correspond to specialized coefficients, M = [M1M2], where submatrix M1 is

of dimension 2n+ 1 and invertible, hence X = M−11 (C −M2B).

We compute some orthogonal projection of N(R), denoted Π, in Rm:

π : R|A| → Rm : N(R)→ Π, m ≤ |A|.

By reindexing, this is the subspace of the first m coordinates, so π(ρ) = (ρ1, . . . , ρm).

It is possible that none of the coefficients cij is specialized, hence m = |A|, π
is trivial, and Π = N(R). Assuming the specialized coefficients take sufficiently

generic values, Π is the Newton polytope of the corresponding specialization of R.

The following is used for preprocessing.

Lemma 1. [Ref. 7 Lemma 3.20] If aij ∈ Ai corresponds to a specialized coefficient

of fi, and lies in the convex hull of the other points in Ai corresponding to specialized

coefficients, then removing aij from Ai does not change the Newton polytope of the

specialized resultant.

We focus on three applications. First, we interpolate the resultant in all coeffi-

cients, thus illustrating an alternative method for computing resultants.

Example 2. Let f0 = a2x
2 + a1x + a0, f1 = b1x

2 + b0, with supports

A0 = {2, 1, 0}, A1 = {1, 0}. Their (Sylvester) resultant is a polynomial in

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

406 I. Z. Emiris et al.

a2, a1, a0, b1, b0. Our algorithm computes its Newton polytope with vertices

(0, 2, 0, 1, 1), (0, 0, 2, 2, 0), (2, 0, 0, 0, 2); it contains 4 lattice points, corresponding to

4 potential resultant monomials a21b1b0, a
2
0b

2
1, a2a0b1b0, a

2
2b

2
0. Knowing these po-

tential monomials, to interpolate the resultant, we need 4 points (a0, a1, a2, b0, b1)

for which the system f0 = f1 = 0 has a solution. For computing these points we

use the parameterization of resultants in Ref. 24, which yields: a2 = (2t1 + t2)t23t4,

a1 = (−2t1 − 2t2)t3t4, a0 = t2t4, b1 = −t1t23t5, b0 = t1t5, where the ti’s are

parameters. We substitute these expressions to the monomials, evaluate at 4 suf-

ficiently random ti’s, and obtain a matrix whose kernel vector (1, 1,−2, 1) yields

R = a21b1b0 + a20b
2
1 − 2a2a0b1b0 + a22b

2
0.

Second, consider system solving by the rational univariate representation of

roots.25 Given f1, . . . , fn ∈ C[x1, . . . , xn], define an overconstrained system by

adding f0 = u0+u1x1+· · ·+unxn with symbolic ui’s. Let coefficients cij , i ≥ 1, take

specific values, and suppose that the roots of f1 = · · · = fn = 0 are isolated, denoted

ri = (ri1, . . . , rin). Then the u-resultant is Ru = a
∏
ri

(u0 + u1ri1 + · · ·+ unrin)mi ,

a ∈ C∗, where mi is the multiplicity of ri. Computing Ru is the bottleneck; our

method computes (a superset of) N(Ru).

Example 3. Let f1 = x21 + x22 − 4, f2 = x1 − x2 + 2, and f0 = u0 + u1x1 +

u2x2. Our algorithm computes a polygon with vertices {(2, 0, 0), (0, 2, 0), (0, 0, 2)},
which contains N(Ru) = CH({(2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}). The coefficient

specialization is not generic, hence N(Ru) is strictly contained in the computed

polygon. Proceeding as in Example 2, Ru = 2u20 + 4u0u1 − 4u0u2 − 8u1u2, which

factors as 2(u0 + 2u1)(u0 − 2u2).

The last application comes from geometric modeling, where yi = fi(x), i =

0, . . . , n, x = (x1, . . . , xn) ∈ Ω ⊂ Rn, defines a parametric hypersurface. Many

applications require the equivalent implicit representation F (y1, . . . , yn) = 0. This

amounts to eliminating x, so it is crucial to compute the resultant when coefficients

are specialized except the yi’s. Our approach computes a polytope that contains

the Newton polytope of F , thus reducing implicitization to interpolation.1,4 In par-

ticular, we compute the polytope of surface equations within 1sec, assuming ≤ 100

terms in parametric polynomials, which includes all common instances in geometric

modeling.

Example 4. Let us see how the above computation can serve in implicitization.

Consider the surface given by the polynomial parameterization

(y1, y2, y3) = (x1x2, x1x
2
2, x

2
1).

For polynomials f0 := c00−c01x1x2, f1 := c10−c11x1x22, f2 := c20−c21x21 with sup-

ports A0 = {(0, 0), (1, 2)}, A1 = {(0, 0), (1, 2)} and A2 = {(0, 0), (2, 0)}. The resul-

tant polytope is a segment in R6 with endpoints (4, 0, 0, 2, 0, 1), (0, 4, 2, 0, 1, 0) and,

actually, R = −c400c211c21 + c401c
2
10c20. The supports and the two mixed subdivisions

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

An Algorithm for Projections of Resultant Polytopes 407

c00

c01

c10

c11

c20c21

c400c
2
11c21 c401c

2
10c20

Fig. 3. The supports A0, A1, A2 of Example 4, their Newton polytopes (segments) and the two

mixed subdivisions of their Minkowski sum.

corresponding to the vertices of N(R) are illustrated in Fig. 3. Specializing the

symbolic coefficients of the polynomials as:

(c00, c01, c10, c11, c20, c21) 7→ (y1,−1, y2,−1, y3,−1)

yields the vertices of the implicit polytope: (4, 0, 0), (0, 2, 1), which our algorithm can

compute directly. The implicit equation of the surface turns out to be −y41 + y22y3.

3. Algorithms and Complexity

This section analyzes our exact and approximate algorithms for computing orthog-

onal projections of polytopes whose vertices are defined by an oracle. This oracle

computes a vertex of the polytope which is extremal in a given direction w. If there

are more than one such vertices the oracle returns exactly one of these. Moreover,

we define such an oracle for the vertices of orthogonal projections Π of N(R) which

results in algorithms for computing Π while avoiding computing N(R). Finally, we

analyze the asymptotic complexity of these algorithms.

Given a pointset V , reg subdivision(V, ω) computes the regular subdivision of

its convex hull by projecting the upper hull of V lifted by ω, and conv(V) computes

the H-representation of the convex hull of V . The oracle VTX(A, w, π) computes

a point in Π = π(N(R)), extremal in the direction w ∈ (Rm)×. First it adds

to w an infinitesimal symbolic perturbation vector, thus obtaining wp. Then calls

reg subdivision(A, ŵp), ŵp = (wp,~0) ∈ (R|A|)× that yields a regular triangulation T

of A, since wp is generic, and finally returns π(ρT). It is clear that the triangulation

T constructed by VTX(·) is regular and corresponds to some secondary vertex φT

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

408 I. Z. Emiris et al.

which maximizes the inner product with ŵp. Since the perturbation is arbitrarily

small, both φT , ρT also maximize the inner product with ŵ = (w,~0) ∈ (R|A|)×.

We use perturbation to avoid computing non-vertex points on the boundary of

Π. The perturbation can be implemented in VTX(·), without affecting any other

parts of the algorithm, either by case analysis or by a method of symbolic pertur-

bation. In practice, our implementation does avoid computing non-vertex points

on the boundary of Π by computing a refinement of the subdivision obtained by

calling reg subdivision(A, ŵ). This refinement is implemented in triangulation by

computing a placing triangulation with a random insertion order26 (Sec. 5).

Lemma 2. All points computed by VTX(·) are vertices of Π.

Proof. Let v = π(ρT) = VTX(A, w, π). We first prove that v lies on ∂Π. The

point ρT of N(R) is a Minkowski summand of the vertex φT of Σ(A) extremal

with respect to ŵ, hence ρT is extremal with respect to ŵ. Since ŵ is perpendicular

to projection π, ρT projects to a point in ∂Π. The same argument implies that

every vertex φ′T , where T ′ is a triangulation refining the subdivision produced by

ŵ, corresponds to a resultant vertex ρT ′ such that π(ρT ′) lies on a face of Π. This

is actually the same face on which π(ρT) lies. Hence ρT ′ also lies on ∂Π.

Now we prove that v is a vertex of Π by showing that it does not lie in the

relative interior of a face of Π. Let w be such that the face f of N(R) extremal

with respect to ŵ contains a vertex ρT which projects to relint(π(f)), where relint(·)
denotes relative interior. However, f will not be extremal with respect to ŵp and

since VTX(A, w, π) uses the perturbed vector wp, it will never compute a vertex of

N(R) whose projection lies inside a face of Π.

The initialization algorithm computes an inner approximation of Π in both V-

and H-representations (denoted Q, QH , respectively), and triangulated. First, it

calls VTX(A, w, π) for w ∈W ⊂ (Rm)×; the set W is either random or contains, say,

vectors in the 2m coordinate directions. Then, it updates Q by adding VTX(A, w, π)

and VTX(A,−w, π), where w is normal to hyperplane H ⊂ Rm containing Q, as

long as either of these points lies outside H. Since every new vertex lies outside the

affine hull of the current polytope Q, all polytopes produced are simplices. We stop

when these points do no longer increase dim(Q).

Lemma 3. The initialization algorithm computes Q ⊆ Π such that

dim(Q) = dim(Π).

Proof. Suppose that the initialization algorithm computes a polytope Q′ ⊂ Π

such that dim(Q′) < m. Then there exists vertex v ∈ Π, v /∈ Aff(Q′) and vector

w ∈ (Rm)× perpendicular to Aff(Q′), such that w belongs to the normal cone of v

in Π and dim(Aff(Q′ ∪ v)) > dimQ′. This is a contradiction, since such a w would

have been computed as VTX(A, w, π) or VTX(A,−w, π), where w is normal to the

hyperplane H containing Q′.

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

An Algorithm for Projections of Resultant Polytopes 409

Incremental Algorithm 1 computes both V- and H-representations of Π and a

triangulation of Π, given an inner approximation Q,QH of Π computed at the

initialization. A hyperplane H is called legal if it is a supporting hyperplane to a

facet of Π, otherwise it is called illegal. At every step of Algorithm 1, we compute

v = VTX(A, w, π) for a supporting hyperplane H of a facet of Q with normal

w. If v /∈ H, it is a new vertex thus yielding a tighter inner approximation of Π

by inserting it to Q, i.e. Q ⊂ CH(Q ∪ v) ⊆ Π. This happens when the preimage

π−1(f) ⊂ N(R) of the facet f of Q defined by H, is not a Minkowski summand

of a face of Σ(A) having normal ŵ. Otherwise, there are two cases: either v ∈ H
and v ∈ Q, thus the algorithm simply decides hyperplane H is legal, or v ∈ H

and v /∈ Q, in which case the algorithm again decides H is legal but also inserts

v to Q.

The algorithm computes QH from Q, then iterates over the new hyperplanes to

either compute new vertices or decide they are legal, until no increment is possible,

which happens when all hyperplanes are legal. Algorithm 1 ensures that each normal

w to a hyperplane supporting a facet of Q is used only once, by storing all used

w’s in a set W . When a new normal w is created, the algorithm checks if w /∈ W ,

then calls VTX(A, w, π) and updates W ← W ∪ w. If w ∈ W then the same or

a parallel hyperplane has been checked in a previous step of the algorithm. It is

straightforward that w can be safely ignored; Lemma 4 formalizes the latter case.

Lemma 4. Let H ′ be a hyperplane supporting a facet constructed by Algorithm 1,

and H 6= H ′ an illegal hyperplane at a previous step. If H ′, H are parallel then H ′

is legal.

Proof. Let w,w′ be the outer normal vectors of the facets supported by H,H ′ re-

spectively. If H,H ′ are parallel then v = VTX(A, w, π) maximizes the inner product

with w′ in Q which implies that hyperplane H ′ is legal.

The next lemma formulates the termination criterion of our algorithm.

Lemma 5. Let v = VTX(A, w, π), where w is normal to a supporting hyperplane

H of Q, then v 6∈ H if and only if H is not a supporting hyperplane of Π.

Proof. Let v = π(ρT), where T is a triangulation refining subdivision S in VTX(·).
It is clear that, since v ∈ ∂Π is extremal with respect to w, if v 6∈ H then H cannot

be a supporting hyperplane of Π. Conversely, let v ∈ H. By the proof of Lemma 2,

every other vertex π(ρ′T) on the face of N(R) is extremal with respect to w, hence

lies on H, thus H is a supporting hyperplane of Π.

We now bound the complexity of our algorithm. Beneath-and-Beyond, given a

k-dimensional polytope with l vertices, computes its H-representation and a tri-

angulation in O(k5lt2), where t is the number of full-dimensional faces (cells). We

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

410 I. Z. Emiris et al.

Algorithm 1: ComputeΠ (A0, . . . , An, π)

Input : essential A0, . . . , An ⊂ Zn processed by Lemma 1,

projection π : R|A| → Rm,

H-, V-repres. QH , Q; triang. TQ of Q ⊆ Π.

Output: H-, V-repres. QH , Q; triang. TQ of Q = Π.

A ← ⋃n
0 (Ai × ei) // Cayley trick

Hillegal ← ∅
foreach H ∈ QH do Hillegal ← Hillegal ∪ {H}
while Hillegal 6= ∅ do

select H ∈ Hillegal and Hillegal ← Hillegal \ {H}
w is the outer normal vector of H

v ← VTX(A, w, π)

if v /∈ H ∩Q then

QHtemp ← conv(Q ∪ {v}) // convex hull computation

foreach (d− 1)-face f ∈ TQ visible from v do
TQ ← TQ ∪ {faces of conv(f, v)}

foreach H ′ ∈ {QH \QHtemp} do

Hillegal ← Hillegal \ {H ′} // H ′ separates Q, v

foreach H ′ ∈ {QHtemp \QH} do

Hillegal ← Hillegal ∪ {H ′} // new hyperplane

Q← Q ∪ {v}
QH ← QHtemp

return Q,QH , TQ

follow the analysis of Ref. 27 for simplicity. Let |Π|, |ΠH | be the number of vertices

and facets of Π.

Lemma 6. Algorithm 1 executes VTX(·) at most |Π|+ |ΠH | times.

Proof. The steps of Algorithm 1 increment Q. At every such step, and for each

supporting hyperplane H of Q with normal w, the algorithm calls VTX(·) and

computes one vertex of Π, by Lemma 2. If H is illegal, this vertex is unique because

H separates the set of (already computed) vertices of Q from the set of vertices of

Π \Q which are extremal with respect to w, hence, an appropriate translate of H

also separates the corresponding sets of vertices of Σ(A) (Fig. 4). This vertex is

never computed again because it now belongs to Q. The number of VTX(·) calls

yielding vertices is thus bounded by |Π|.
For a legal hyperplane of Q, we compute one vertex of Π that confirms its

legality; the VTX(·) call yielding this vertex is accounted for by the legal hyperplane.

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

An Algorithm for Projections of Resultant Polytopes 411

+ =

X N(R)

Q

Σ(A)

Q + X

Fig. 4. Lemma 6: each illegal hyperplane of Q with normal w, separates the already computed

vertices of Π (here equal to N(R)) from new ones, extremal with respect to w. X is a polytope

such that X +N(R) = Σ(A).

The statement follows by observing that every normal to a hyperplane of Q is used

only once in Algorithm 1 (by the earlier discussion concerning the set W of all used

normals).

Let the size of a triangulation be the number of its cells. Let sA denote the size

of the largest triangulation of A computed by VTX(·), and sΠ that of Π computed

by Algorithm 1. In VTX(·), the computation of a regular triangulation reduces

to a convex hull, computed in O(n5|A|s2A); for ρT we compute the volume of all

the cells of T in O(sAn
3). The overall complexity of VTX(·) becomes O(n5|A|s2A).

Algorithm 1 calls, in every step, VTX(·) to find a point on ∂Π and insert it to

Q, or to conclude that a hyperplane is legal. By Lemma 6 it executes VTX(·)
as many as |Π| + |ΠH | times, in O((|Π| + |ΠH |)n5|A|s2A), and computes the H-

representation of Π in O(m5|Π|s2Π). Now we have, |A| ≤ (2n + 1)sA and as the

input |A|,m, n grows large we can assume that |Π| � |A| and thus sΠ dominates

sA. Moreover, sΠ(m+ 1) ≥ |ΠH |. Now, let Õ(·) imply that polylogarithmic factors

are ignored.

Theorem 1. The time complexity of Algorithm 1 to compute Π ⊂ Rm is

O(m5|Π|s2Π + (|Π|+ |ΠH |)n5|A|s2A), which becomes Õ(|Π|s2Π) when |Π| � |A|.

This implies our algorithm is output sensitive. Its experimental performance

confirms this property, see Sec. 5.

We have proven that oracle VTX(·) (within our algorithm) has two important

properties:

(1) Its output is a vertex of the target polytope (Lemma 2).

(2) When the direction w is normal to an illegal facet, then the vertex computed

by the oracle is computed once (Lemma 6).

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

412 I. Z. Emiris et al.

The algorithm can easily be generalized to incrementally compute any polytope P

if the oracle associated with the problem satisfies property (1); if it satisfies also

property (2), then the computation can be done in O(|P |+ |PH |) oracle calls, where

|P |, |PH | denotes the number of vertices and number of facets of P , respectively.

For example, if the described oracle returns π(φT) instead of π(ρT), it can be used

to compute orthogonal projections of secondary polytopes.

The algorithm readily yields an approximate variant: for each supporting hyper-

plane H, we use its normal w to compute v =VTX(A, w, π). Instead of computing

a convex hull, now simply take the hyperplane parallel to H through v. The set

of these hyperplanes defines a polytope Qo ⊇ Π, i.e. an outer approximation of

Π. In particular, at every step of the algorithm, Q and Qo are an inner and an

outer approximation of Π, respectively. Thus, we have an approximation algorithm

by stopping Algorithm 1 when vol(Q)/vol(Qo) achieves a user-defined threshold.

Then, vol(Q)/vol(Π) is bounded by the same threshold. Implementing this algo-

rithm yields a speedup of up to 25 times (Sec. 5). It is clear that vol(Q) is available

by our incremental convex hull algorithm. However, vol(Qo) is the critical step; we

plan to examine algorithms that update (exactly or approximately) this volume.

When all hyperplanes of Q are checked, knowledge of legal hyperplanes ac-

celerates subsequent computations of QH , although it does not affect its worst-

case complexity. Specifically, it allows us to avoid checking legal facets against new

vertices.

4. Hashing of Determinants

This section discusses methods to avoid duplication of computations by exploiting

the nature of the determinants appearing in the inner loop of our algorithm. Our

algorithm computes many regular triangulations, which are typically dominated by

the computation of determinants. A similar technique, using dynamic determinant

computations, is used to improve determinantal predicates in incremental convex

hull computations.28

Consider the 2n × |A| matrix with the points of A as columns. Define P as

the extension of this matrix obtained by adding lifting values ŵ as the last row.

We use the Laplace (or cofactor) expansion along the last row for computing the

determinant of the square submatrix formed by any 2n+ 1 columns of P ; without

loss of generality, we assume these are the first 2n + 1 columns a1, . . . , a2n+1. Let

(1, . . . , 2n+ 1) \ i be the vector resulting from removing the i-th element from the

vector (1, . . . , 2n+ 1) and let P(1,...,2n+1)\i be the (2n)× (2n) matrix obtained from

the 2n elements of the columns whose indices are in (1, . . . , 2n+ 1) \ i.
The Orientation predicate is the sign of the determinant of Phom(1,...,2n+2), con-

structed by columns a1, . . . , a2n+2 and adding ~1 ∈ R2n+2 as the last row. Computing

a regular subdivision is a long sequence of such predicates, varying ai’s on each step.

We expand along the next-to-last row, which contains the lifting values, and com-

pute the determinants |P(1,...,2n+2)\i| for i ∈ {1, . . . , 2n + 2}. Another determinant

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

An Algorithm for Projections of Resultant Polytopes 413

formula is Volume, used by VTX(·). It equals the determinant of Phom(1,...,2n+1), con-

structed by columns a1, . . . , a2n+1 and replacing the last row of the matrix by
~1 ∈ R2n+1.

Example 5. Consider the polynomials f0 := c00 − c01x1x2 + c02x2, f1 := c10 −
c11x1x

2
2 + c12x

2
2 and f2 := c20 − c21x21 + c22x2 and the lifting vector ŵ yielding the

matrix P .

P =

0 0 0 1 1 2 0 0 0 }
support coordinates

0 0 0 1 2 0 1 2 1

0 1 0 0 1 0 0 1 0 }
Cayley trick coordinates

0 0 1 0 0 1 0 0 1

w1 w2 w3 0 0 0 0 0 0 } ŵ

We reduce the computations of predicates to computations of minors of the matrix

obtained from deleting the last row of P . Computing an Orientation predicate using

Laplace expansion consists of computing

(
6

4

)
= 15 minors. On the other hand, if we

compute |Phom(1,2,3,4,5,6)|, the computation of |Phom(1,2,3,4,5,7)| requires the computation

of only

(
6

4

)
−
(

5

4

)
= 10 new minors. More interestingly, when given a new lifting

ŵ′, we compute |P ′ hom(1,2,3,4,5,6)| without computing any new minors.

Our contribution consists in maintaining a hash table with the computed minors,

which will be reused at subsequent steps of the algorithm. We store all minors of sizes

between 2 and 2n. For Orientation, they are independent of w and once computed

they are stored in the hash table. The main advantage of our scheme is that, for

a new w, the only change in P are m (nonzero) coordinates in the last row, hence

computing the new determinants can be done by reusing hashed minors. This also

saves time from matrix constructions.

Laplace expansion computation of a matrix of size n has complexity

O(n)
∑n
i=1 Li, where Li is the cost of computing the i-th minor. Li equals 1 when

the i-th minor was precomputed; otherwise, it is bounded by O
(
(n − 1)!

)
. This

allows us to formulate the following Lemma.

Lemma 7. Using hashing of determinants, the complexity of the Orientation predi-

cates and Volume determinant formulas is O(n) and O(1), respectively, if all minors

have already been computed.

Many determinant algorithms modify the input matrix; this makes necessary to

create a new matrix and introduces a constant overhead on each minor computa-

tion. Computing with Laplace expansion, while hashing the minors of smaller size,

performs better than state-of-the-art algorithms, in practice. Experiments in Sec. 5

show that our algorithm with hashed determinants outperforms the version without

hash. For m = 3 and m = 4, we experimentally observed that the speedup factor is

between 18 and 100; Fig. 6(b) illustrates the second case.

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

414 I. Z. Emiris et al.

The drawback of hashing determinants is the amount of storage, which is

bounded by, which is in O(n!). The hash table can be cleared at any moment

to limit memory consumption, at the cost of dropping all previously computed mi-

nors. Finding a policy to clear the hash table according to the number of times each

minor was used would decrease the memory consumption, while keeping running

times low. Exploring different heuristics, such as using a LRU (least recently used)

cache, to choose which minors to drop when freeing memory would be an interesting

research subject.

It is possible to exploit the structure of the above (2n) × (2n) minor matrices.

Let M be such a matrix, with columns corresponding to points of A0, . . . , An. After

column permutations, we split M into four n×n submatrices A,B,D, I, where I is

the identity matrix and D has at most one 1 in each column. This follows from the

fact that the bottom half of every column in M has at most one 1 and the last n rows

of M contain at least one 1 each, unless detM = 0, which is easily checked. Now,

detM = ±det(B−AD), with AD constructed in O(n). Hence, the computation of

(2n)×(2n) minors is asymptotically equal to computing an n×n determinant. This

only decreases the constant within the asymptotic bound. A simple implementation

of this idea is not faster than Laplace expansion in the dimensions that we currently

focus. However, this idea should be valuable in higher dimensions.

5. Implementation and Experiments

We implemented Algorithm 1 in C++ to compute Π; our code can be obtained

from

http://respol.sourceforge.net.

All timings shown in this section were obtained on an Intel Core i5-2400 3.1GHz,

with 6MB L2 cache and 8GB RAM, running 64-bit Debian GNU/Linux.

Our implementation, respol, relies on CGAL, using mainly a preliminary ver-

sion of package triangulation,26 for both regular triangulations, as well as for

the V- and H-representation of Π. As for hashing determinants, we looked for a

hashing function, that takes as input a vector of integers and returns an integer,

which minimizes collisions. We considered many different hash functions, including

some variations of the well-known FNV hash.29 We obtained the best results with

the implementation of Boost Hash,30 which shows fewer collisions than the other

tested functions. We clear the hash table when it contains 106 minors. This gives a

good tradeoff between efficiency and memory consumption. Last column of Table 1

shows that the memory consumption of our algorithm is related to |A| and dim(Π).

We start our experiments by comparing four state-of-the-art exact convex hull

packages: triangulation implementing Ref. 31 and beneath-and-beyond (bb)

in polymake;32 double description implemented in cdd;33 and lrs implementing

reverse search.34 We compute Π, actually extending the work in Ref. 35 for the

new class of polytopes Π. The triangulation package was shown to be faster in

http://respol.sourceforge.net

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

An Algorithm for Projections of Resultant Polytopes 415

Table 1. Total time and memory consumption of our code (respol) and time comparison of online

version of triangulation (tr/on) and offline versions of all convex hull packages for computing
the H-representation of Π.

m |A| # of Π time (seconds) respol

vertices respol tr/on tr/off bb cdd lrs Mb

3 2490 318 85.03 0.07 0.10 0.07 1.20 0.10 37

4 27 830 15.92 0.71 1.08 0.50 26.85 3.12 46

4 37 2852 97.82 2.85 3.91 2.29 335.23 39.41 64
5 15 510 11.25 2.31 5.57 1.22 47.87 6.65 44

5 18 2584 102.46 13.31 34.25 9.58 2332.63 215.22 88
5 24 35768 4610.31 238.76 577.47 339.05 > 1hr > 1hr 360

6 15 985 102.62 20.51 61.56 28.22 610.39 146.83 2868

6 19 23066 6556.42 1191.80 2754.30 > 1hr > 1hr > 1hr 6693
7 12 249 18.12 7.55 23.95 4.99 6.09 11.95 114

7 17 500 302.61 267.01 614.34 603.12 10495.14 358.79 5258

0.01

0.1

1

10

100

0 500 1000 1500 2000 2500 3000

ti
m

e
 (

se
c
)

bb

cdd

lrs

(a)

1

10

100

1000

10000

0 5000 10000 15000 20000 25000 30000 35000 40000

ti
m

e

Number of points

cgal
bb

cdd
lrs

cgal_off

(b)

Fig. 5. Comparison of convex hull packages for 4-dimensional (a) and 5-dimensional (b) Π.

triang on/triang off are the online/offline versions of triangulation package (y-axis is in loga-

rithmic scale).

computing Delaunay triangulations in ≤ 6 dimensions.26 The other three packages

are run through polymake, where we have ignored the time to load the data. We test

all packages in an offline version. We first compute the V-representation of Π using

our implementation and then we give this as an input to the convex hull packages

that compute the H-representation of Π. Moreover, we test triangulation by

inserting points in the order that Algorithm 1 computes them, while improving the

point location of these points since we know by the execution of Algorithm 1 one

facet to be removed (online version). The experiments show that triangulation

and bb are faster than lrs, which outperforms cdd. Furthermore, the online version

of triangulation is 2.5 times faster than its offline counterpart due to faster point

location (Table 1, Fig. 5).

A placing triangulation of a set of points is a triangulation produced by the

Beneath-and-Beyond convex hull algorithm for some ordering of the points. That

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

416 I. Z. Emiris et al.

is, the algorithm places the points in the triangulation with respect to the order-

ing. Each point which is going to be placed, is connected to all visible faces of the

current triangulation resulting in the construction of new cells. An advantage of

triangulation is that it maintains a placing triangulation of a polytope in Rd by

storing the 0, 1, d − 1, d dimensional cells of the triangulation. This is useful when

the oracle VTX(A, w, π) needs to refine the regular subdivision of A which is ob-

tained by projecting the upper hull of the lifted pointset Aŵ (Sec. 3). In fact, this

refinement is attained by a placing triangulation, i.e., by computing the projection

of the upper hull of the placing triangulation of Aŵ. This is implemented in two

steps:

Step 1. compute the placing triangulation T0 of the last |A| − m points with a

random insertion order as described in Ref. 26 (they all have height zero),

Step 2. place the first m points of Aŵ in T0 with a random insertion order.26

Step 1 is performed only once at the beginning of the algorithm, whereas Step 2 is

performed every time we check a new w. The order of placing the points in Step 2

only matters if w is not generic; otherwise, w already produces a triangulation of

the m points, so any placing order results in this triangulation.

This is the implemented method; although different from the perturbation in

the proof of Lemma 2, it is more efficient because of the reuse of triangulation T0
in Step 1 above. Moreover, our experiments show that it always validates the two

conditions in Sec. 3.

We can formulate this 2-step construction using a single lifting. Let c > 0 be

a sufficiently large constant, ai ∈ A, qi ∈ R, qi > c qi+1, for i = 1, . . . , |A|. Define

lifting h : A → R2, where h(ai) = (wi, qi), for i = 1, . . . ,m, and h(ai) = (0, qi),

for i = m + 1, . . . , |A|. Then, projecting the upper hull of Ah to R2n yields the

triangulation of A obtained by the 2-step construction.

Fixing the dimension of the triangulation at compile time results in < 1%

speedup. We also tested a kernel that uses the filtering technique based on in-

terval arithmetic reference 36 with a similar time speedup. On the other hand,

triangulation is expected to implement incremental high-dimensional regular tri-

angulations with respect to a lifting, faster than the above method.37 Moreover,

we use a modified version of triangulation in order to benefit from our hashing

scheme. Therefore, all cells of the triangulated facets of Π have the same normal

vector and we use a structure (STL set) to maintain the set of unique normal

vectors, thus computing only one regular triangulation per triangulated facet of Π.

We perform an experimental analysis of our algorithm. We design experiments

parameterized on: the total number of input points |A|, the dimension n of pointsets

Ai, and the dimension of projection m. First, we examine our algorithm on ran-

dom inputs for implicitization and u-resultants, where m = n + 1, while varying

|A|, n. We fix δ ∈ N and select random points on the δ-simplex to generate dense

inputs, and points on the (δ/2)-cube to generate sparse inputs. For implicitization

the projection coordinates correspond to point ai1 = (0, . . . , 0) ∈ Ai. For n = 2

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

An Algorithm for Projections of Resultant Polytopes 417

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300 350 400 450 500

ti
m

e
 (

s
e

c
)

Number of input points

(a)

0.01

0.1

1

10

100

1000

10000

100000

10 15 20 25 30 35 40 45

ti
m

e
 (

se
c
)

Number of points

Respol-hash
Respol-no hash

Gfan-TTR
Gfan-NFSI

(b)

0.01

0.1

1

10

100

1000

10000

10 15 20 25 30 35 40 45

ti
m

e
 (

s
e

c
)

Number of input points

m=3
m=4
m=5

(c)

0.01

0.1

1

10

100

0 50 100 150 200 250 300 350 400 450

ti
m

e
 (

s
e

c
)

Number of � vertices

m=3

m=5
m=4

(d)

Fig. 6. (a) Implicitization and u-resultants for n = 2,m = 3; (b) Comparison of respol (hashing
and not hashing determinants) and Gfan (traversing tropical resultants and computing normal fan

from stable intersection) for m = 4; (c) Performance of Alg. 1 for m = 3, 4, 5 as a function of input;

(d) Performance of Alg. 1 as a function of its output; y-axes in (b), (c), (d) are in logarithmic
scale.

the problem corresponds to implicitizing surfaces: when |A| < 60, we compute the

polytopes in < 1sec (Fig. 6(a)). When computing the u-resultant polytope, the pro-

jection coordinates correspond to A0 = {(1, . . . , 0), . . . , (0, . . . , 1)}. For n = 2, when

|A| < 500, we compute the polytopes in < 1sec (Fig. 6(a)).

By using the hashing determinants scheme we gain a 18× speedup when

n = 2, m = 3. For m = 4 we gain a larger speedup; we computed in < 2min

an instance where |A| = 37 and would take > 1hr to compute otherwise. Thus,

when the dimension and |A| becomes larger, this method allows our algorithm to

compute instances of the problem that would be intractable otherwise, as shown for

n = 3, m = 4 (Fig. 6(b)).

We confirm experimentally the output-sensitivity of our algorithm. First, our

algorithm always computes vertices of Π either to extend Π or to legalize a facet.

We experimentally show that our algorithm has, for fixed m, a subexponential

behaviour with respect to both input and output (Figs. 6(c) and 6(d)) and its

output is subexponential with respect to the input.

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

418 I. Z. Emiris et al.

Table 2. Typical f-vectors of projections of resultant polytopes and the size of their triangulations.
We perform 20 runs with random insertion order of vertices for each polytope and report the

minimum, maximum, average value µ and the standard deviation σ for the number of cells and

the runtime.

cells in triangulation time (sec)
f-vector of Π

µ σ min max µ σ min max
4781 154 4560 5087 0.35 0.01 0.34 0.38 449 1405 1438 482

16966 407 16223 17598 1.51 0.03 1.45 1.56 1412 4498 4705 1619
18229 935 16668 20058 1.92 0.10 1.77 2.11 432 1974 3121 2082 505

563838 6325 548206 578873 99 1.62 93.84 103.07 9678 43569 71004 50170 13059
289847 15788 264473 318976 69 4.88 61.67 77.31 1308 7576 16137 16324 7959 1504
400552 14424 374149 426476 96.5 4.91 88.86 107.12 1680 9740 21022 21719 10890 2133

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200

v
o
l(

Q
)/

v
o
l(

�

)

number of random normal vectors

m=3

m=4

m=5

(a)

✁

✂✁✁✁

✄✁✁✁

☎✁✁✁

✆✁✁✁

✝✁✁✁✁

✝✂✁✁✁

✝✄✁✁✁

✝☎✁✁✁

✁ ✂✁✁ ✄✁✁ ☎✁✁ ✆✁✁ ✝✁✁✁ ✝✂✁✁ ✝✄✁✁ ✝☎✁✁ ✝✆✁✁

�
✞
✟
✠
✡
☛
☞
✌
✍
✡
✎✎
✏
✑✒
✓☛
✑✔
✒
✕
✞
✎✔
✓✑
☞
✒
☞
✌
�

✖✗✘✙✚✛ ✁ ✜✚✛✢✣✤✚✥

✂✄☎

(b)

Fig. 7. (a) vol(Q)/vol(Π) as a function of the number of random normal vectors used to compute

Q; (b) The size of the triangulation of Π as a function of the output of Alg. 1.

As the complexity analysis (Theorem 1) indicates, the runtime of the algorithm

depends on the size of the constructed placing triangulation of Π. The size of the

placing triangulation depends on the ordering of the inserted points. We perform

experiments on the effect of the inserting order to the size of the triangulation as

well as the running time of the computation of the triangulation (Table 2). These

sizes as well as the runtimes vary in a very narrow range. Thus, the insertion order is

not crucial in both the runtime and the space of our algorithm. Further experiments

in 4-dimensional N(R) show that the size of the input bounds polynomially the size

of the triangulation of the output (Fig. 7(b)) which explains the efficiency of our

algorithm in this dimension.

We explore the limits of our implementation. By bounding runtime to < 2hr,

we compute instances of 5-, 6-, 7-dimensional Π with 35K, 23K, 500 vertices,

respectively (Table 1).

We also compare with the implementation of Ref. 7, which is based on Gfan

library. They develop two algorithms to compute projections of N(R). Assuming

R defines a hypersurface, their methods compute a union of (possibly overlapping)

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

An Algorithm for Projections of Resultant Polytopes 419

Table 3. Comparison of our implementation with Gfan. ∗ Timings for Gfan as reported

in Ref. 7.

examples in Ref. 7 a b c d e f g h i

|A| 12 12 15 12 12 16 27 16 20

m 12 12 15 6 7 9 3 4 5

n 3 2 4 2 2 3 2 3 4
Gfan(secs∗) 1.40 6 55 0.70 1.30 798 0.40 2.60 184

respol(secs) 1.40 18.41 99.90 0.26 1.24 934 0.02 0.96 292.01

cones, along with their multiplicities, see Theorem 2.9 of Ref. 7. From this interme-

diate result they construct the normal cones to the resultant vertices.

We compare with the best timings of Gfan methods using the examples and

timings of Ref. 7 (Table 3). Our method is faster in examples (d), (e), (g), (h)

where m < 7, is competitive (up to 2 times slower) in (a) where m = |A| = 12 and

(i) where m = 5, |A| = 20 and slower in (b), (c), (f) where m ≥ 12. The bottleneck

of our implementation, which makes it slower when the dimension of the projection

m is high, is the incremental convex hull construction in Rm. Moreover, since our

implementation considers that N(R) lies in R|A| instead of R|A|−2n−1, (see also the

discussion on the homogeneities of R in Sec. 2), it cannot take advantage of the fact

that dim(N(R)) could be less than m when |A| − 2n − 1 < m < |A|. This is the

case in examples (b), (c) and (f). On the other hand, we run extensive experiments

for n = 3, considering implicitization, where m = 4 and our method, with and

without using hashing, is much faster than any of the two algorithms based on

Gfan (Fig. 6(b)). However, for n = 4, m = 5 the beta version of Gfan used in our

experiments was not stable and always crashed when |A| > 13.

We analyze the computation of inner and outer approximations Q and QHo .

We test the variant of Sec. 3 by stopping it when vol(Q)/vol(QHo) > 0.9. In the

experiments, the number of Q vertices is < 15% of the Π vertices, thus there is

a speedup of up to 25 times over the exact algorithm at the largest instances.

The approximation of the volume is very satisfactory: vol(QHo)/vol(Π) < 1.04 and

vol(Q)/vol(Π) > 0.93 for the tested instances (Table 4). The bottleneck here is

the computation of vol(QHo), where QHo is given in H-representation: the runtime

explodes for m ≥ 5. We use polymake in every step to compute vol(QHo) because

we are lacking of an implementation that, given a polytope P in H-representation,

its volume and a halfspace H, computes the volume of the intersection of P and

H. Note that we do not include this computation time in the reported time. Our

current work considers ways to extend these observations to a polynomial-time

approximation algorithm for the volume and the polytope itself when the latter is

given by an optimization oracle, as is the case here.

Next, we study procedures that compute only the V-representation of Q.

For this, we count how many random vectors uniformly distributed on the

m-dimensional sphere are needed to obtain vol(Q)/vol(Π) > 0.9. This proce-

dure runs up to 10 times faster than the exact algorithm (Table 4). Figure 7(a)

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

420 I. Z. Emiris et al.

Table 4. Results on experiments computing Q,QH
o using the approximation algorithm and the

random vectors procedure; we stop the approximation algorithm when vol(Q)/vol(Qo) > 0.9; the
results with random vectors are the average values over 10 independent experiments; “> 10hr”

indicates computation of vol(Qo) was interrupted after 10hr.

input
m 3 3 4 4 5 5

|A| 200 490 20 30 17 20

approximation
of Q vertices 15 11 63 121 > 10hr > 10hr

vol(Q)/vol(Π) 0.96 0.95 0.93 0.94 > 10hr > 10hr

algorithm
vol(Qo)/vol(Π) 1.02 1.03 1.04 1.03 > 10hr > 10hr

time (sec) 0.15 0.22 0.37 1.42 > 10hr > 10hr

uniformly
|Q| 34 45 123 207 228 257

random vectors 606 576 613 646 977 924

random
vol(Q)/vol(Π) 0.93 0.99 0.94 0.90 0.90 0.90

time (sec) 5.61 12.78 1.10 4.73 8.41 16.90

exact # of Π vertices 98 133 416 1296 1674 5093

algorithm time (sec) 2.03 5.87 3.72 25.97 51.54 239.96

illustrates the convergence of vol(Q)/vol(Π) to the threshold value 0.9 in typical

3, 4, 5-dimensional examples. The basic drawback of this method is that it does not

provide guarantees for vol(Q)/vol(Π) because we do not have sufficient a priori

information on Π. These experiments also illustrate the extent in which the normal

vectors required to deterministically construct Π are uniformly distributed over

the sphere.

6. Future Work

One algorithm that should be experimentally evaluated is the following. We perform

a search over the vertices of Σ(A), that is, we build a search tree with flips as edges.

We keep a set with the extreme vertices with respect to a given projection. Each

computed vertex that is not extreme in the above set is discarded and no flips are

executed on it, i.e. the search tree is pruned in this vertex. The search procedure

could be the algorithm of TOPCOM or the one presented in Ref. 14 which builds

a search tree in some equivalence classes of Σ(A). The main advantage of this

algorithm is that it does not involve a convex hull computation. On the other hand,

it is not output-sensitive with respect to the number of vertices of the resultant

polytope; its complexity depends on the number of vertices on the silhouette of

Σ(A), with respect to a given projection and those that are connected by an edge

with them.

As shown, polymake’s convex hull algorithm is competitive, thus one may use

it for implementing our algorithm. On the other hand, triangulation is expected

to include fast enumeration of all regular triangulations for a given (non generic)

lifting, in which case Π may be extended by more than one (coplanar) vertices.

Our proposed algorithm uses an incremental convex hull algorithm and it

is known that any such algorithm has a worst-case super-polynomial total time

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

An Algorithm for Projections of Resultant Polytopes 421

complexity38 in the number of input points and output facets. The basic open ques-

tion that this paper raises is whether there is a polynomial total time algorithm for

Π or even for the set of its vertices.

Acknowledgments

All authors were partially supported from project “Computational Geometric

Learning”, which acknowledges the financial support of the Future and Emerging

Technologies (FET) programme within the 7th Framework Programme for research

of the European Commission, under FET-Open grant number: 255827. Most of

the work was done while C. Konaxis and L. Peñaranda were at the University of

Athens. C. Konaxis’ research leading to these results has also received funding from

the European Union’s Seventh Framework Programme (FP7-REGPOT-2009-1) un-

der grant agreement no 245749. We thank O. Devillers and S. Hornus for discussions

on triangulation, and A. Jensen and J. Yu for discussions and for sending us a

beta version of their code.

References

1. I. Z. Emiris, T. Kalinka, C. Konaxis and T. Luu Ba, Implicitization of curves and
(hyper)surfaces using predicted support, Theor. Comp. Sci. Special Issue on Symbolic
& Numeric Comput. 479 (2013) 81–98.

2. B. Sturmfels and J. Yu, Tropical implicitization and mixed fiber polytopes, Software
for Algebraic Geometry, IMA Volumes in Math. and its Applic., Vol. 148 (Springer,
New York, 2008), pp. 111–131.

3. J. Rambau, TOPCOM: Triangulations of point configurations and oriented matroids,
Proc. Intern. Congress Math. Software, Beijing, 2002, pp. 330–340.

4. I. Z. Emiris, T. Kalinka, C. Konaxis and T. Luu Ba, Sparse implicitization by interpo-
lation: Characterizing non-exactness and an application to computing discriminants,
J. Comput. Aided Design, Special Issue on Symposium Solid and Phys. Modeling 2012
45 (2013) 252–261.

5. F. Rincón, Computing tropical linear spaces, J. Symbolic Computation 51 (2013)
86–98.

6. CGAL: Computational geometry algorithms library, http://www.cgal.org.
7. A. Jensen and J. Yu, Computing tropical resultants, J. Algebra., 2013 387(1) (2011)

287–319.
8. I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, Resultants and

Multidimensional Determinants (Birkhäuser, Boston, 1994).
9. B. Sturmfels, On the Newton polytope of the resultant, J. Algebraic Combin. 3 (1994)

207–236.
10. A. Dickenstein, I. Z. Emiris and V. Fisikopoulos, Combinatorics of 4-dimensional

resultant polytopes, Proc. ACM Int. Symp. Symbolic & Algebraic Comput., 2013,
pp. 173-180.

11. S. Yu. Orevkov, The volume of the Newton polytope of a discriminant, Russ. Math.
Surv. 54(5) (1999) 1033–1034.

12. H. Imai, T. Masada, F. Takeuchi and K. Imai, Enumerating triangulations in general
dimensions, Int. J. Comput. Geom. Appl. 12(6) (2002) 455–480.

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

422 I. Z. Emiris et al.

13. T. Michiels and R. Cools, Decomposing the secondary Cayley polytope, Discr. Com-
put. Geom. 23 (2000) 367–380.

14. T. Michiels and J. Verschelde, Enumerating regular mixed-cell configurations, Discr.
Comput. Geom. 21(4) (1999) 569–579.

15. P. Huggins, IB4E: A software framework for parametrizing specialized lP problems,
Mathematical Software (ICMS 2006), eds. A. Iglesias and N. Takayama, Lecture Notes
in Computer Science, Vol. 4151 (Springer, Berlin, 2006), pp. 245–247.

16. E. Kaltofen and G. Villard, On the complexity of computing determinants, Comput.
Complexity 13 (2005) 91–130.

17. H. Brönnimann, I. Z. Emiris, V. Pan and S. Pion, Sign determination in Residue
Number Systems, Theor. Comp. Sci., Spec. Issue on Real Numbers and Computers
210(1) (1999) 173–197.

18. J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen, E. Kaltofen, B. D.
Saunders, W. J. Turner and G. Villard, Linbox: A generic library for exact linear
algebra, Proc. Int. Congress Math. Software, Beijing, 2002, pp. 40–50.

19. G. Guennebaud et al., Eigen v3. http://eigen.tuxfamily.org (2010).
20. I. Z. Emiris, V. Fisikopoulos, C. Konaxis and L. Peñaranda, An output-sensitive

algorithm for computing projections of resultant polytopes, Proc. Annual ACM Symp.
Computational Geometry, 2012, pp. 179–188.

21. J. A. De Loera, J. Rambau and F. Santos, Triangulations: Structures for Algorithms
and Applications, Algorithms and Computation in Mathematics, Vol. 25 (Springer,
2010).

22. G. M. Ziegler, Lectures on Polytopes (Springer, 1995).
23. D. Cox, J. Little and D. O’Shea, Using Algebraic Geometry, Number 185 in GTM

(Springer, New York, 2nd edition, 2005).
24. M. M. Kapranov, Characterization of A-discriminantal hypersurfaces in terms of log-

arithmic Gauss map, Math. Annalen 290 (1991) 277–285.
25. S. Basu, R. Pollack and M.-F. Roy, Algorithms in Real Algebraic Geometry (Springer,

Berlin, 2003).
26. J.-D. Boissonnat, O. Devillers and S. Hornus, Incremental construction of the Delau-

nay triangulation and the Delaunay graph in medium dimension, Proc. Annual ACM
Symp. Computational Geometry, 2009, pp. 208–216.

27. M. Joswig, Beneath-and-beyond revisited, Algebra, Geometry, and Software Systems,
eds. M. Joswig and N. Takayama, Mathematics and Visualization (Springer, Berlin,
2003).

28. V. Fisikopoulos and L. Peñaranda, Faster geometric algorithms via dynamic deter-
minant computation, Proc. 20th Europ. Symp. Algorithms, LNCS, Springer, 2012,
pp. 443–454.

29. G. Fowler, L. C. Noll and P. Vo, Fowler/Noll/Vo (FNV) hash algorithm,
www.isthe.com/chongo/tech/comp/fnv (1991).

30. D. James, Boost functional library, www.boost.org/libs/functional/hash (2008).
31. K. L. Clarkson, K. Mehlhorn and R. Seidel, Four results on randomized incremental

constructions, Comput. Geom.: Theory & Appl. 3 (1993) 185–121.
32. E. Gawrilow and M. Joswig, Polymake: An approach to modular software design in

computational geometry, Proc. Annual ACM Symp. Computational Geometry, 2001,
pp. 222–231.

33. K. Fukuda, cdd and cdd+ Home Page. ETH Zürich, http://www.inf.ethz.ch/
personal/fukudak/cdd home/index.html (2008).

34. D. Avis, LRS: A revised implementation of the reverse search vertex enumera-
tion algorithm, Polytopes: Combinatorics and Computation, Oberwolfach Seminars,
Vol. 29 (Birkhäuser, 2000), pp. 177–198.

July 2, 2014 13:47 WSPC/Guidelines S0218195913600108

An Algorithm for Projections of Resultant Polytopes 423

35. D. Avis, D. Bremner and R. Seidel, How good are convex hull algorithms? Comput.
Geom.: Theory & Appl. 7 (1997) 265–301.

36. H. Brönnimann, C. Burnikel and S. Pion, Interval arithmetic yields efficient dy-
namic filters for computational geometry, Proc. Annual ACM Symp. Computational
Geometry, 1998, pp. 165–174.

37. O. Devillers, Personal communication (2011).
38. D. Bremner, Incremental convex hull algorithms are not output sensitive, Proc. 7th

Int. Symp. Algorithms and Comput. (Springer, London, UK, 1996), pp. 26–35.

Copyright of International Journal of Computational Geometry & Applications is the property
of World Scientific Publishing Company and its content may not be copied or emailed to
multiple sites or posted to a listserv without the copyright holder's express written permission.
However, users may print, download, or email articles for individual use.

	Introduction
	Resultant Polytopes and their Projections
	Algorithms and Complexity
	Hashing of Determinants
	Implementation and Experiments
	Future Work

