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Efficient volume and edge-skeleton computation
for polytopes defined by oracles ∗

Ioannis Z. Emiris† Vissarion Fisikopoulos† Bernd Gärtner‡

Abstract

We design and implement total polynomial-time al-
gorithms for computing the exact edge-skeleton and
for approximating the volume of polytopes given by
optimization oracles. That is, the time complexity of
the algorithm is bounded by a polynomial in the in-
put and the output size. The main algorithmic step
is to obtain efficient separation oracles given an opti-
mization oracle, which is reduced to solving a linear
program in the polar polytope. This separation ora-
cle is used to yield polynomial-time Monte Carlo algo-
rithms for approximating the volume of the polytope.
Next, we use this separation oracle to derive the first
total polynomial-time algorithm for the edge skeleton
of the polytope, when we are also given a superset
of the polytope’s edges, with cardinality bounded by
a polynomial in the number of those edges. Finally,
we briefly discuss our implementation and experimen-
tal results of optimization and volume approximation
algorithms, based on random walks.

1 Introduction

Convex polytopes in general dimension admit a num-
ber of alternative representations. The best known,
explicit representations for a polytope P is either as
the set of its vertices (possibly with additional infor-
mation about the positive-dimensional faces), or as a
bounded intersection of halfspaces. In the latter case,
a linear programming problem (LP) on P consists in
finding a vertex of P that maximizes the inner prod-
uct with a given objective vector c. In this paper we
study the case where a polytope is given by an implicit
representation. That is, the only allowable access to
P is a black box subroutine (oracle) that solves the
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LP problem on P for a given vector c. Then, we say
that P is given by an optimization, or LP, or vertex
oracle. Given such an oracle, the entire polytope can
be reconstructed and its explicit representation can
be found using the Beneath-Beyond method [2]. This
is implemented in [8, 4] for a special case of polytopes,
called resultant polytopes.

Another important implicit representation for a
polytope P is to be given by a separation oracle. That
is, given a point x the oracle returns yes if x ∈ P or
a hyperplane that separates P from x otherwise. To
acquire an optimization oracle for P , one has to solve
a linear program over P , using the separation ora-
cle. This can be done by (variants of) the ellipsoid
method (Sect. 2).

Now we pose the opposite (dual) question. Given
an optimization oracle for a polytope P , compute a
separation oracle for P . This boils down to solving
a linear program in the polar dual space where the
optimization oracle of P is a separation oracle for the
polar polytope P ∗ (Sect. 2).

Proposition 1 An approximate separation oracle
for a well-rounded polytope P ⊆ Rn, given by an
optimization oracle of complexity T , is computed in
time O∗(nT+n3.38), where O∗(·) hides polylog factors
in the argument.

Well-rounded means that the radii of some bounding
and some inscribed ball differ by a constant factor not
depending on n. Also, the approximation error is as-
sumed to be constant, so that the bound is simple and
only depends on n and T . Prop. 1 is the main algo-
rithmic tool used in the sequel. This leads to our first
contribution, namely an implementation of a linear
program solver based on the randomized algorithm
of [1] (Sect. 4), which is also valuable because of its
independent interest.

Regarding the volume computation problem, it is
known that the exact computation is hard. However,
randomized poly-time approximation algorithms ex-
ist when the polytope is given by a separation oracle,
and currently the best complexity is O∗(n4) oracle
calls [13]. The literature on implementing such algo-
rithms is limited. A notable exception is [12], which
implements [13] and computes the volume of n-cubes,
n = 2, 5, 8, in 807, 1901, 7551 secs respectively. Our
second contribution consist in providing an implemen-
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tation, based on the O∗(n5) algorithm of [9], which is
simpler and appears to have competitive performance
(Sect. 4). Regarding volume computation for poly-
topes given by optimization oracle, Prop. 1 is used in
conjunction with the above randomized algorithm.

Edge skeleton computation and vertex enumeration
from edge directions and suitable oracles is a prob-
lem of independent interest. It has been studied be-
fore [14]; their solution is used as a subroutine in ef-
ficiently solving convex integer programming in fixed
dimension [11]. Our third contribution is the design
of total poly-time algorithms for computing the ex-
act edge-skeleton of polytopes given by optimization
oracles, when we are also given a superset of the poly-
tope’s edges, with cardinality bounded by a polyno-
mial in the number of those edges.

Applications. Two applications have motivated this
paper. The first is the Minkowski sum P ⊂ Rn of
polytopes P1, . . . , Pr ⊂ Rn which are given by the set
of their vertices. Here, optimization oracles are nat-
urally and easily available, whereas it is not straight-
forward to construct the separation oracles. To illus-
trate this assume we are given a direction. Then, the
extremal vertex of each polytope summand can be
efficiently computed by computing the interior prod-
uct of the direction with each vertex of the summand.
The extremal vertex of P towards the given direction
is the sum of the extremal vertices of the summands.
The above can be generalized for summand polytopes
given by optimization oracles.

Proposition 2 If P1, . . . , Pr are given by optimiza-
tion oracles, each of complexity bounded by v, then by
Prop. 1, a separation oracle for P =

∑r
i=1 Pi is com-

puted in O∗(nrv+n3.38). The edge skeleton of P can
be computed in O∗(m2n3.5) and an approximation of
its volume in O∗(n7.38).

Our second application is resultant polytopes. Re-
sultant polynomials are fundamental in algebraic ge-
ometry since they generalize determinants to nonlin-
ear systems [6]. The Newton polytope of resultant
R, or resultant polytope, is the convex hull of the ex-
ponent vectors corresponding to nonzero terms. A
resultant is defined for d+ 1 pointsets in Zd. If R lies
in Zn, the total number of input points is n+ 2d+ 1,
and we assume that they are in generic position. If m
is the number of vertices in R, typically m� n� d,
so d is assumed fixed. A poly-time optimization ora-
cle is described in [4]. This approach can be used for
the secondary and discriminant polytopes [6].

Proposition 3 Given an optimization oracle for R ⊂
Zn we can compute the edge-skeleton of R ⊂ Zn in
O∗(m3nb(d/2)+1c + m4n) for input points in generic
position, and an approximation of its volume in
O∗(nb(d/2)+5c), where d > 5.

2 Polytope oracles

We introduce all tools needed to prove Prop. 1. Fol-
lowing [7], we define 5 basic oracles for polytope
P ⊂ Rn and, for completeness, describe exact poly-
time procedures that connect them.
Optimization (OPTP (c)): Given c ∈ Rn, find x ∈ P
maximizing cTx, x ∈ P , or assert P = ∅.
Validity (V ALP (c)): Given c ∈ Rn, decide whether
cTx ≤ 1 holds for all x ∈ P .
Violation (V IOLP (c)): Given c ∈ Rn, call V ALP (c);
if negative, find y ∈ P : cT y > 1.
Membership (MEMP (y)): Given y ∈ Rn decide
whether y ∈ P .
Separation (SEPP (y)): Given y ∈ Rn callMEMP (y).
If it answers negatively, find the normal to a hyper-
plane that separates y from P ; i.e. c ∈ Rn : cT y >
max{cTx | x ∈ P}.

We use the polar dual polytope of P in dual space
(Rn)∗, as defined in e.g. [16]:

P ∗ := {c ∈ Rn : cTx ≤ 1, for all x ∈ P} ⊆ (Rn)∗,

where we assume that the origin 0 ∈ int(P ), the rela-
tive interior of P , i.e. 0 is not contained in any face of
P of dimension < n. This hypothesis can be ensured
by an appropriate affine translation.

It is easy to see that having OPTP we can derive
V IOLP and then V ALP . Similarly, having SEPP we
can derive MEMP . For a polytope P ⊆ Rn, its po-
lar P ∗ ⊆ (Rn)∗ and c ∈ Rn, it holds V IOLP (c) =
SEPP∗(cT ) hence V IOLP∗(cT ) = SEPP (c) [16,
Thm 2.11].

Given V IOLP (c) we compute OPTP (c) by per-
forming binary search on the value of cTx, for x ∈
P . That is, we test feasibility, or non-emptiness, of
{x ∈ P : cTx ≤ c0} for various constants c0, by
calling V IOL(c) on suitably chosen translations of P .

Let B(ρ) denotes the n-ball of radius ρ centered at
the origin. Assume that P ⊆ B(ρ) and B(r) ⊆ P if
P is not empty. Then, let L denote the log-ratio of
the bounding balls of P , i.e. L = lg(ρ/r). Computing
V IOLP from SEPP is a fundamental question. Some
poly-time algorithms for this problem are the ellip-
soid method [10] with complexity O(n2LTS + n4L)
that [15] improves to

O(nLTS + n3.38L) = O∗(nTS + n3.38) (1)

and the randomized algorithm of [1] which runs in
O(nLTS + n7L), where TS is the complexity of the
separation oracle.

For proving Prop. 1 we have to compute a sepa-
ration oracle for a polytope P , SEPP , given an op-
timization oracle for P , OPTP . As it is explained
above this can be done by solving a linear program in
the polar dual space. The fastest algorithm used to
solve this linear program is [15], with complexity of
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Eq. (1). However, we implement the slightly slower
but simpler algorithm of [1].

3 Computing the edge skeleton

We are implicitly given a polytope P ⊆ Rn via an op-
timization oracle OPTP (x) of P and we are explicitly
given a superset E of all edge directions of P , i.e.

E ⊇ D(P ) := {v − w : v, w adjacent vertices of P},

with cardinality |E| bounded by a polynomial in
|D(P )|. The goal is to efficiently compute the edge
skeleton of P , i.e. its vertices and the edges connect-
ing the vertices. Even if E = D(P ), this set does not
in general provide enough information to perform the
task, so we need additional information about P ; here
we assume an optimization oracle.

Proposition 4 [14] Let P ⊆ Rn be a polytope given
by an optimization oracle OPTP (c), and let E ⊇
D(P ) be a superset of the edge directions of P , With
O(|E|n−1) arithmetic operations and O(|E|n−1) calls
to OPTP (c), all vertices of P can be computed.

If P has m vertices, then |D(P )| ≤
(
m
2

)
, and this

is tight for neighborly polytopes in general position.
This means that the bound of Prop. 4 is Θ

(
m2n−2)

in the worst case.

We improve over this result and compute the edge
skeleton with a number of arithmetic operations and
calls to OPTP (x) which are polynomial in m,n, and
L∗, the ratio between the radii of balls enclosing
and included in the polar P ∗. This ratio comes in
since we construct a separation oracle SEPP (y) from
OPTP (x), according to Prop. 1. We therefore get rid
of the exponential dependence on n in Prop. 4, but
at the cost of an additional dependence on L∗ which
in general cannot be bounded by m,n. On the other
hand, L∗ is related to L.

The algorithm is as follows. Using OPTP (c), we
find the unique vertex v of minimum xn coordinate.
We maintain sets VP , EP of vertices and edges that
have already been found, along with a priority queue
W of the vertices that are in VP . When we process the
next vertex v from the queue, it remains to find its in-
cident edges. To find the neighbors of v, we first build
a set Vcone of candidate vertices. Vcone can be con-
structed using SEPP (y) that we build from OPTP (x)
as described above. In a final step, we remove the can-
didates that do not yield vertices. For this, we first
solve a linear program to compute a hyperplane sepa-
rating v from the candidates; w.l.o.g. this hyperplane
is {xn = 1}. Then we compute the extreme points
of C ∩ {xn = 1}, giving us the extremal rays of C.
Finally, we remove every point from Vcone that is not
on an extremal ray, or not highest on its extremal ray.

We bound the time complexity of the algorithm: We
call OPTP (x) to find the first vertex of P . Then, there
are O(m) iterations; one iteration calls SEPP (y) at
most |E| times, each call requiring O(nL∗T+n3.38L∗)
time, where T is the time to execute OPTP (x). Then
we compute the (at most m) extreme points from a
set of at most |E| points, which can be done in

O(|E| · LP∗(n+ 1,m+ 1) + n|E|m)

time and O(n|E|) space [3], where LP∗(a, b) is the
time to solve a linear program with a variables and b
inequality constraints.

Assuming |E| = O(|D(P )|) = O(m2), we obtain
the following result, and since LP∗(n,m) is polyno-
mial in n,m in the bit model [10], an overall polyno-
mial bound follows.

Theorem 5 The algorithm runs in time
O(m3(nL∗T + n3.38L∗ + LP∗(n,m))), where T
is the time to perform one call to OPTP (x).

4 Implementation and experiments

We implement optimization and volume computation
algorithms based on random walks. The Hit-and-Run
random walk is used to generate uniformly distributed
points in P ⊂ Rn in O∗(n3) per point [13]. In a feasi-
bility problem we have to answer if a given polytope P
is empty or compute a feasible point in P . We imple-
ment optimization algorithms based on [1] that solves
the feasibility problem. The advantage of this algo-
rithm is its simplicity and the re-usage of procedures,
such as random walks, in volume computation.

We also implement randomized approximate vol-
ume computation algorithms of polytopes given by
separation oracles. Moreover, we implement the al-
gorithm in [9] which approximates of the volume of
a polytope P given by a separation oracle by com-
puting uniformly distributed points in P . Assuming
B(1) ⊆ P ⊆ B(ρ), the algorithm returns an estima-
tion of vol(P ), which lies between (1 − ε)vol(P ) and
(1 + ε)vol(P ) with probability ≥ 3/4, making

O

(
n4ρ2

ε2
lnn ln ρ ln2 n

ε

)
= O∗(n4ρ2)

oracle calls with probability ≥ 9/10. Combining
the above implementations we also provide an im-
plementation for volume approximation of Minkowski
sums. The code is in C++ and is publicly available
at http://sourceforge.net/projects/randgeom.

We perform an experimental analysis of the above
implemented algorithms on an Intel Core i5-2400
3.1GHz, 6MB L2 cache, 8GB RAM, 64-bit Debian
GNU/Linux. The optimization algorithms are able to
run in less than a minute for up to dimension 11 when
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n vol(P ) exact(sec) r2 ws (1 + ε)vol(P ) min max µ σ appr(sec)
2 4 0.06 2218 8 6.09 3.84 4.12 3.97 0.05 0.23
4 16 0.06 2738 7 30.4 14.99 16.25 15.59 0.32 1.77
6 64 0.09 5308 38 121.6 60.85 67.17 64.31 1.12 39.66
8 256 2.62 8215 16 486.4 242.08 262.95 252.71 5.09 46.83

10 1024 388.25 11370 40 1945.6 964.58 1068.22 1019.02 30.72 228.58
12 4096 – 14725 82 7782.4 3820.94 4247.96 4034.39 80.08 863.72

Table 1: Volume computation for hypercubes; ‘–’: the exact method was unable to compute the volume.

n vol(P ) exact(sec) r2 ws min max µ σ appr(sec)
2 14.00 0.01 216 11 12.60 19.16 15.16 1.34 119.00
3 45.33 0.01 200 7 42.92 57.87 49.13 3.92 462.65
4 139.33 0.03 100 7 100.78 203.64 130.79 21.57 721.42
5 412.26 0.23 100 7 194.17 488.14 304.80 59.66 1707.97

Table 2: Volume computation of the Minkowski sum of a hypercube and a crosspolytope.

tested on hypercubes and their polar duals, namely
crosspolytopes. The volume approximation algorithm
tested on hypercubes and crosspolytopes compute the
volume up to dimension 12 within minutes, whereas it
is intractable to compute in more than 10 dimensions
with exact methods, such as Polymake [5]. For 20
runs, the code’s computed values have less than 2%
error from the average one. Additionally, the mini-
mum and maximum computed values bounds the ex-
act volume providing tighter bounds than the theo-
retical ones, i.e. (1 ± ε)vol(P ). Table 1 shows exper-
imental results, where r2 is the number of random
points computed, ws is the number of the steps of
a Hit-and-Run random walk, and max, min, µ and
σ denote, respectively, the maximum, the minimum,
the average and the average absolute deviation of the
computed volume approximation.

Finally, we compute an approximation of the vol-
ume of the Minkowski sum of a hypercube and a
crosspolytope. We perform 10 experiments for each
polytope sum. The results show that the min and
max computed values bound the exact one. However,
we are unable to compute in dimensions higher than
5 since each membership test for P runs one of the
optimization algorithms. On the other hand, there
is space for improvement in many places of the pro-
totype implementations of optimization and volume
computation, which will improve the Minkowski sum
volume computation as well. Table 2 shows experi-
mental results with the same notation as in Table 1.

References

[1] D. Bertsimas and S. Vempala. Solving convex pro-
grams by random walks. J. ACM, 51(4):540–556,
2004.

[2] B. Chazelle. An optimal convex hull algorithm in any
fixed dimension. Discrete & Computational Geome-
try, 10:377–409, 1993.

[3] K.L. Clarkson. More output-sensitive geometric algo-
rithms. In Proc. IEEE FOCS, pages 695–702, 1994.

[4] I.Z. Emiris, V. Fisikopoulos, C. Konaxis, and
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