
Journal of Symbolic Computation 73 (2016) 139–152
Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

Efficient edge-skeleton computation for

polytopes defined by oracles ✩

Ioannis Z. Emiris a, Vissarion Fisikopoulos a,1, Bernd Gärtner b

a Department of Informatics & Telecommunications, University of Athens, Greece
b Department of Computer Science, ETH Zurich, Switzerland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 December 2014
Accepted 4 May 2015
Available online 12 June 2015

Keywords:
General dimension
Polytope oracle
Edge-skeleton
Total polynomial-time
Linear optimization
Vertex enumeration

In general dimension, there is no known total polynomial algo-
rithm for either convex hull or vertex enumeration, i.e. an algo-
rithm whose complexity depends polynomially on the input and
output sizes. It is thus important to identify problems and poly-
tope representations for which total polynomial-time algorithms
can be obtained. We offer the first total polynomial-time algorithm
for computing the edge-skeleton—including vertex enumeration—
of a polytope given by an optimization or separation oracle, where
we are also given a superset of its edge directions. We also of-
fer a space-efficient variant of our algorithm by employing reverse
search. All complexity bounds refer to the (oracle) Turing machine
model. There is a number of polytope classes naturally defined
by oracles; for some of them neither vertex nor facet representa-
tion is obvious. We consider two main applications, where we ob-
tain (weakly) total polynomial-time algorithms: Signed Minkowski
sums of convex polytopes, where polytopes can be subtracted
provided the signed sum is a convex polytope, and computation
of secondary, resultant, and discriminant polytopes. Further ap-
plications include convex combinatorial optimization and convex

✩ All authors were partially supported from project “Computational Geometric Learning”, which acknowledges the financial
support of the Future and Emerging Technologies programme within the 7th Framework Programme for research of the
European Commission, under FET-Open grant number: 255827. I.Z.E. and V.F. are partially supported by the European Union
(European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of
the National Strategic Reference Framework (NSRF) – Research Funding Program: THALIS – UOA (MIS 375891).

E-mail addresses: emiris@di.uoa.gr (I.Z. Emiris), vfisikop@ulb.ac.be (V. Fisikopoulos), gaertner@inf.ethz.ch (B. Gärtner).
1 Present address: Computer Science Department, Universitè libre de Bruxelles CP 216, Boulevard du Triomphe, 1050 Brussels,

Belgium.
http://dx.doi.org/10.1016/j.jsc.2015.06.001
0747-7171/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.jsc.2015.06.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
mailto:emiris@di.uoa.gr
mailto:vfisikop@ulb.ac.be
mailto:gaertner@inf.ethz.ch
http://dx.doi.org/10.1016/j.jsc.2015.06.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsc.2015.06.001&domain=pdf

140 I.Z. Emiris et al. / Journal of Symbolic Computation 73 (2016) 139–152
integer programming, where we offer a new approach, thus remov-
ing the complexity’s exponential dependence in the dimension.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Convex polytopes are fundamental geometric objects in science and engineering. Their applications
are ranging from theoretical computer science to optimization and algebraic geometry. Polytopes in
general dimension admit a number of alternative representations. The best known, explicit represen-
tations for a bounded polytope P are either the set of its vertices (V-representation) or a bounded
intersection of halfspaces (H-representation). Switching between the two representations constitutes
the convex hull and vertex enumeration problems. A linear programming problem (LP) on P consists
in finding a vertex of P that maximizes the inner product with a given objective vector c. This is very
easy if P is in V-representation; even if P is in H-representation, this LP can be solved in polynomial
time.

In general dimension, there is no polynomial-time algorithm for either convex hull or vertex
enumeration, since the output size can be exponential in the worst case by the upper bound the-
orem (McMullen, 1971). We therefore wish to take the output size into account and say that an
algorithm runs in total polynomial time if its time complexity is bounded by a polynomial in the input
and output size. There is no known total polynomial-time algorithm for either convex hull or ver-
tex enumeration. Avis et al. (1997) identify, for each known type of convex hull algorithm, explicit
families of polytopes for which the algorithms run in superpolynomial time.

However, finding the vertices of the convex hull of a given point set reduces to LP and has
thus polynomial complexity in the input. The algorithm in (Avis and Fukuda, 1992) solves, in total
polynomial-time, vertex enumeration for simple polytopes and convex hull for simplicial polytopes.
For 0/1-polytopes a total polynomial-time algorithm for vertex enumeration is presented in (Bussieck
and Lübbecke, 1998), where a 0/1-polytope is such that all vertices have coordinates 0 or 1. In this
paper we establish another case where total polynomial-time algorithms exist.

An important explicit representation of a polytope is the edge-skeleton (or 1-skeleton), which is the
graph of polytope vertices and edges, but none of the faces of dimension larger than one. For simple
polytopes, the edge-skeleton determines the complete face lattice (see Joswig et al., 2002 and the
references therein), but in general, this is false. The edge-skeleton is a useful and compact represen-
tation employed in different problems, e.g. in computing general-dimensional Delaunay triangulations
of a given pointset: Boissonnat et al. (2009) show how the edge-skeleton suffices for point location
by allowing them to recover only the needed full-dimensional simplices of the triangulation. Another
application is in mixed volume computation (Malajovich, 2014).

In this paper we study the case where a polytope P is given by an implicit representation, where
the only access to P is a black box subroutine (oracle) that solves the LP problem on P for a given
vector c. Then, we say that P is given by an optimization, or LP oracle. Given such an oracle, the
entire polytope can be reconstructed, and both V- and H-representations can be found using the
Beneath–Beyond method (Emiris et al., 2013; Huggins, 2006), although not in total polynomial-time.

Another important implicit representation of P is obtained through a separation oracle (Section 2).
Celebrated results of Khachiyan (1979) as well as Grötschel et al. (1993) show that separation and
optimization oracles are polynomial-time equivalent (Proposition 2). Many important results in com-
binatorial optimization use the fact that the separation oracle implies the optimization oracle. In our
study, we also need the other direction: Given an optimization oracle, compute a separation oracle
for P .

The problem that we study is closely related to vertex enumeration. We are given an optimiza-
tion oracle for a polytope P and a set of vectors that is guaranteed to contain the directions of all
edges of P ; edge directions are given by unit vectors. We are asked to compute the edge-skeleton
of P so the vertices are also computed. This is similar to the fundamental Minkowski reconstruction
problem, e.g. (Gritzmann and Hufnagel, 1999), except that, instead of information on the facets, we

I.Z. Emiris et al. / Journal of Symbolic Computation 73 (2016) 139–152 141
have information about the 1-dimensional faces (and an oracle). The problem of the reconstruction of
a simple polytope by its edge-skeleton graph is studied in (Joswig et al., 2002).

The most relevant previous work is an algorithm for vertex enumeration of P , given the same
input: an optimization oracle and a superset D of all edge directions (Onn and Rothblum, 2007)
(cf. Proposition 3). It runs in total polynomial-time in fixed dimension. The algorithm computes the
zonotope Z of D , then computes an arbitrary vector in the normal cone of each vertex of Z and calls
the oracle with this vector. It outputs all vertices without further information. Computing the edges
from n vertices can be done by O (n2) calls to LP.

1.1. Applications

Edge-skeleton computation given an oracle and a superset of edge directions naturally appears in
many applications. In Section 4 we offer new efficient algorithms for the first two applications below.

One application is the signed Minkowski sum problem where, besides addition, we also allow a
restricted case of Minkowski subtraction. Let A − B be polytope C such that A can be written as a sum
A = B + C . In other words, a signed Minkowski sum equality such as P − Q + R − S = T should be
interpreted as P + R = Q + S + T . Such sums are motivated by the fact that resultant and discriminant
polytopes (to be defined later) are written as signed sums of secondary polytopes (Michiels and Cools,
2000), (Gelfand et al., 1994, Thm. 11.1.3). Also, matroid polytopes and generalized permutahedra can
be written as signed Minkowski sums (Ardila et al., 2010). We assume that the summands are given
by optimization oracles and the supersets of their edge directions. This is natural since we show that
these supersets can be precomputed for resultant and secondary polytopes.

Minkowski sums have been studied extensively. Given r V-polytopes in Rd , Gritzmann and Sturm-
fels (1993) deal with the various Minkowski sum problems that occur if they regard none, one, or
both of r and d as constants. They give polynomial algorithms for fixed d regardless of the input rep-
resentation. For varying d they show that no polynomial-time algorithm exists except for the case of
fixed r in the binary model of computation. Fukuda (2004), extended in (Fukuda and Weibel, 2005),
gives an LP-based algorithm for the Minkowski sum of polytopes in V-representation whose complex-
ity, in the binary model of computation, is total polynomial, and depends polynomially on δ, which
is the sum of the maximum vertex degree in each summand. However, we are not aware of any al-
gorithm for signed Minkowski sums and it is not obvious how the above algorithms for Minkowski
sums can be extended to the signed case.

The second application is resultant, secondary as well as discriminant polytopes. For resultant
polytopes at least, the only plausible representation seems to be via optimization oracles (Emiris
et al., 2013). Resultants are fundamental in computational algebraic geometry since they generalize
determinants to nonlinear systems (Sturmfels, 1994; Gelfand et al., 1994). The Newton polytope R
of the resultant, or resultant polytope, is the convex hull of the exponent vectors corresponding to
nonzero terms. A resultant is defined for k + 1 pointsets in Zk . If R lies in Rd , the total number of
input points is d + 2k + 1. If n is the number of vertices in R , typically n � d � k, so k is assumed
fixed. A polynomial-time optimization oracle yields an output-sensitive algorithm for the computation
of R (Emiris et al., 2013) (cf. Lemma 13).

This approach can also be used for computing the secondary and discriminant polytopes, defined
in (Gelfand et al., 1994); cf. (De Loera et al., 2010) on secondary polytopes. The secondary polytope of
a pointset is a fundamental object since it offers a realization of the graph of regular triangulations of
the pointset. A total polynomial-time algorithm for the secondary polytope when k is fixed is given
in (Masada et al., 1996). A specific application of discriminant polytopes is discussed in (Orevkov,
1999), where the author establishes a lower bound on the volume of the discriminant polytope of a
multivariate polynomial, thus refuting a conjecture by E.I. Shustin on an asymptotic upper bound for
the number of real hypersurfaces.

The size of all these polytopes is typically exponential in d: the number of vertices of R is
O (d2d2

) (Sturmfels, 1994), and the number of j-faces (for any j) of the secondary polytope is
O (d(d−1)2

), which is tight if d is fixed (Billera et al., 1990).
More applications of our methods exist. One is in convex combinatorial optimization: given F ⊂ 2N

with N = {1, . . . , n}, a vectorial weighting w : N → Qd , and a convex functional c : Qd → Q, find

142 I.Z. Emiris et al. / Journal of Symbolic Computation 73 (2016) 139–152
F ∈ F of maximum value c(w(F)). This captures a variety of (hard) problems studied in operations
research and mathematical programming, including quadratic assignment, scheduling, reliability, bar-
gaining games, and inventory management, see (Onn and Rothblum, 2004) and the references therein.
The standard linear combinatorial optimization problem is the special case with d = 1, w : N → Q,
and c : Q → Q : x �→ x being the identity. As shown in (Onn and Rothblum, 2004), a convex com-
binatorial optimization problem can be solved in polynomial-time for fixed d, if we know the edge
directions of the polytope given by the convex hull of the incidence vectors of the sets in F .

Another application is convex integer maximization, where we maximize a convex function over the
integer hull of a polyhedron. In (De Loera et al., 2009), the vertex enumeration algorithm of Onn and
Rothblum (2007)—based on the knowledge of edge directions—is used to come up with polynomial al-
gorithms for many interesting cases of convex integer maximization, such as multiway transportation,
packing, vector partitioning and clustering. A set that contains the directions of all edges is computed
via Graver bases, and the enumeration of all vertices of a projection of the integer hull suffices to find
the optimal solution.

1.2. Our contribution

We present the first total polynomial-time algorithm for computing the edge-skeleton of a poly-
tope, given an optimization oracle, and a set of directions that contains the polytope’s edge directions.
The polytope is assumed to have some (unknown) H-representation with an arbitrary number of in-
equalities, but each of known bitsize, as shall be specified below. Our algorithm also works if the
polytope is given by a separation oracle. All complexity bounds refer to the (oracle) Turing machine
model, thus leading to (weakly) polynomial-time algorithms when the oracle is of polynomial-time
complexity. By employing the reverse search method of (Avis and Fukuda, 1992) we offer a space-
efficient variant of our algorithm. It remains open whether there is also a strongly polynomial-time
algorithm in the real RAM model of computation.

Our algorithm yields the first (weakly) total polynomial-time algorithms for the edge-skeleton (and
vertex enumeration) of signed Minkowski sum, and resultant polytopes (for fixed k). For both polytope
classes, optimization oracles are naturally and efficiently constructed, whereas it is not straightforward
to obtain the more commonly employed membership or separation oracles. For signed Minkowski
sum we assume that we know the supersets of edge directions for summands. This includes the
important cases where the summands are V-polytopes, and secondary polytopes. For resultant poly-
topes, optimization oracles offer the most efficient known representation. Our results on resultant
polytopes extend to secondary polytopes, as well as discriminant polytopes. Recall that a different
approach in the same complexity class is known for secondary polytopes (Pfeifle and Rambau, 2003;
Masada et al., 1996).

Regarding the problems of convex combinatorial optimization and convex integer programming
the current approaches use the algorithm of Onn and Rothblum (2007) whose complexity has an
exponential dependence on the dimension (Proposition 3). The utilization of our algorithm instead
offers an alternative approach while removing the exponential dependence on the dimension.

1.3. Outline

The next section specifies our theoretical framework. Section 3 introduces polynomial-time algo-
rithms for the edge-skeleton. Section 4 applies our results to signed Minkowski sums, as well as
resultant and secondary polytopes. We conclude with open questions.

2. Well-described polytopes and oracles

This section describes our theoretical framework and relates the most relevant oracles. We start
with the notation used in this paper followed by some basics from polytope theory; for a detailed
presentation we refer to (Ziegler, 1995).

We denote by d the ambient space dimension and n the number of vertices of the output
(bounded) polytope; k denotes dimension when it is fixed (e.g. input space for resultant polytopes);

I.Z. Emiris et al. / Journal of Symbolic Computation 73 (2016) 139–152 143
conv(A) is the convex hull of A. Moreover, ϕ is an upper bound for the encoding length of every
inequality defining a well-described polytope (see the next section); 〈X〉 denotes the binary encoding
size of an explicitly given object X (e.g., a set of vectors). For a well-described and implicitly given
polytope P ⊆ Rd , we will define 〈P 〉 := d + ϕ . Let O : R → R denote a polynomial such that the
oracle conversion algorithms of Proposition 2 all run in oracle polynomial-time O(〈P 〉) for a given
well-described polytope P . The polynomial LP : R → R is such that LP(〈A〉 + 〈b〉 + 〈c〉) bounds the
runtime of maximizing cT x over the polyhedron {x | Ax ≤ b}.

A convex polytope P ⊆ Rd can be represented as the convex hull of a finite set of points, called the
V-representation of P . In other words, P = conv(A), where A = {p1, . . . , pn} ⊆ Rd . Another, equivalent
representation of P is as the bounded intersection of a finite set of halfspaces or linear inequalities,
called the H-representation of P . That is, P = {x | Ax ≤ b}, A ⊆ Rm×d , x ∈ Rd , b ∈ Rm . Given P , an
inequality or a halfspace {aT x ≤ β} (where a ∈ Rd , β ∈ R) is called supporting if aT x ≤ β for all x ∈ P
and aT x = β for some x ∈ P . The set {x ∈ P | aT x = b} is a face of P .

Definition 1. The polar dual polytope of P is defined as:

P∗ := {c ∈Rd : cT x ≤ 1 for all x ∈ P } ⊆Rd,

where we assume that the origin 0 ∈ int(P), the relative interior of P , i.e. 0 is not contained in any
face of P of dimension < d.

For our results, we need to assume that the output polytope is well-described (Grötschel et al.,
1993, Definition 6.2.2). This will be the case in all our applications.

Definition 2. A rational polytope P ⊆ Rd is well-described (with a parameter ϕ that we need to know
explicitly) if there exists an H-representation for P in which every inequality has encoding length at
most ϕ . The encoding length of a well-described polytope is 〈P 〉 = d + ϕ . Similarly, the encoding length
of a set of vectors D ⊆ Rd is 〈D〉 = d + ν if every vector in D has encoding length at most ν .

In defining P , the inequalities are not known themselves, and we make no assumptions about
their number. The following lemma connects the encoding length of inequalities with the encoding
length of vertices.

Lemma 1. (See Grötschel et al., 1993, Lemma 6.2.4.) Let P ⊆ Rd. If every inequality in an H-rep-
resentation for P has encoding length at most ϕ , then every vertex of P has encoding length at most 4d2ϕ .
If every vertex of P has encoding length at most ν , then every inequality of its H-representation has encoding
length at most 3d2ν .

The natural model of computation when P is given by an oracle is that of an oracle Turing ma-
chine (Grötschel et al., 1993, Section 1.2). This is a Turing machine that can (in one step) replace any
input to the oracle (to be prepared on a special oracle tape) by the output resulting from calling the
oracle, where we assume that the output size is polynomially bounded in the input size. An algorithm
is oracle polynomial-time if it can be realized by a polynomial-time oracle Turing machine. Moreover it
is total polynomial-time if its time complexity is bounded by a polynomial in the input and output size.

In this paper, we consider three oracles for polytopes; they can more generally be defined for (not
necessarily bounded) polyhedra, but we do not need this:

• Optimization (OPTP (c)): Given vector c ∈ Rd , either find a point y ∈ P maximizing cT x over all
x ∈ P , or assert P = ∅.

• Violation (VIOLP (c, γ)): Given vector c ∈ Rd and γ ∈R, either find point y ∈ P such that cT y > γ ,
or assert that cT x ≤ γ for all x ∈ P .

• Separation (SEPP (y)): Given point y ∈ Rd , either certify that y ∈ P , or find a hyperplane that
separates y from P ; i.e. find vector c ∈ Rd such that cT y > cT x for all x ∈ P .

The following is a main result of Grötschel et al. (1993) and the cornerstone of our method.

144 I.Z. Emiris et al. / Journal of Symbolic Computation 73 (2016) 139–152
Proposition 2. (See Grötschel et al., 1993, Theorem 6.4.9.) For a well-described polytope, any one of the
three aforementioned oracles is sufficient to compute the other two in oracle polynomial-time. The runtime
(polynomially) depends on the ambient dimension d and the bound ϕ for the maximum encoding length of an
inequality in some H-representation of P .

For applications in combinatorial optimization, an extremely important feature is that the runtime
does not depend on the number of inequalities that are needed to describe P . Even if this number is
exponential in d, the three oracles are polynomial-time equivalent.

Another important corollary is that linear programs can be solved in polynomial-time. Indeed, an
explicitly given (bounded coefficient) system Ax ≤ b, x ∈ Rd of inequalities defines a well-described
polytope P , for which the separation oracle is very easy to implement in time polynomial in 〈P 〉;
hence, the oracle polynomial-time algorithm for OPTP (c) becomes a (proper) polynomial-time algo-
rithm.

3. Computing the edge-skeleton

This section studies total polynomial time algorithms for the edge-skeleton of a polytope. We are
given a well-described polytope P ⊆ Rd via an optimization oracle OPTP (c) of P . Moreover, we are
given a superset D of all edge directions of P ; to be precise, we define

D(P) :=
{

v − w

‖v − w‖ : v and w are adjacent vertices of P

}

to be the set of (unit) edge directions, and we assume that for every e ∈ D(P), the set D contains
some positive multiple te, t ∈R, t > 0. Slightly abusing notation, we write D ⊇ D(P).

The goal is to efficiently compute the edge-skeleton of P , i.e. its vertices and the edges connecting
the vertices. Even if D = D(P), this set does not, in general, provide enough information for the task,
so we need additional information about P ; here we assume an optimization oracle.

Vertex enumeration with this input has been studied in the real RAM model of computation where
we count the number of arithmetic operations:

Proposition 3. (See Onn and Rothblum, 2007.) Let P ⊆ Rd be a polytope given by OPTP (c), and let D ⊇
D(P) be a superset of the edge directions of P . The vertices of P are computed using O (|D|d−1) arithmetic
operations and O (|D|d−1) calls to OPTP (c).

If P has n vertices, then |D(P)| ≤ (n
2

)
, and this is tight for neighborly polytopes in general

position (Ziegler, 1995). This means that the bound of Proposition 3 is O
(
n2d−2

)
, assuming that

|D| = �(|D(P)|).
We show below that the edge-skeleton can be computed in oracle total polynomial-time for a

well-described polytope, which possesses an (unknown) H-representation with encoding size ϕ . Thus,
we show that the exponential dependence on d in Proposition 3 can be removed in the Turing ma-
chine model of computation, leading to a (weakly) total polynomial-time algorithm. It remains open
whether there is also a strongly total polynomial-time algorithm with a total polynomial runtime
bound in the real RAM model of computation.

The algorithm (Algorithm 1) is as follows. Using OPTP (c), we find some vertex v0 of P (this can be
done even if OPTP (c) does not directly return a vertex Grötschel et al., 1993, Lemma 6.51, Edmonds
et al., 1982, pp. 255–256).

We maintain sets V P , E P of vertices and their incident edges, along with a queue W ⊆ V P of
the vertices for which we have not found all incident edges yet. Initially, W = {v0}, V P = E P = ∅.
When we process the next vertex v from the queue, it remains to find its incident edges: equiva-
lently, the neighbors of v . To find the neighbors, we first build a set V cone of candidate vertices. We
know that for every neighbor w of v , there must be an edge direction e such that w = v + te for
suitable t > 0. More precisely, w is the point corresponding to maximum t in the 1-dimensional poly-
tope Q (e) := P ∩ {x | x = v + te, t ≥ 0}, where the latter equals the intersection of P with the ray in

I.Z. Emiris et al. / Journal of Symbolic Computation 73 (2016) 139–152 145
Algorithm 1: Edge_Skeleton (OPTP , D)

Input : Optim. oracle OPTP (c), superset D of edge directions D(P)

Output: The edge-skeleton (and vertices) of P

Compute some vertex v0 ∈ P ;
V P ← ∅; W ← {v0}; E P ← ∅;
while W �= ∅ do

Choose the next element v ∈ W and remove it from W ;
V P ← V P

⋃{v};
V cone ← ∅;
foreach e ∈ D do

w ← argmax{v + te ∈ P , t ≥ 0};
if w �= v then

V cone ← V cone
⋃{w};

Remove non-vertices of P from V cone;
foreach w ∈ V cone do

if w /∈ V P then W ← W
⋃{w};

if {v, w} /∈ E P then E P ← E P
⋃{v, w};

return V P , E P ;

direction e and apex at v . Hence, by solving |D| linear programs, one for every e ∈ D , we can build a
set V cone that is guaranteed to contain all neighbors of v . To solve these linear programs, we need to
construct optimization oracles for Q (e). To do this, we first construct SEPP (y) from OPTP (c) in oracle
polynomial-time according to Proposition 2. Thus, the construction of SEPQ (e)(y) is elementary, and
since also Q (e) is well-described, we can obtain OPTQ (e)(c) in oracle polynomial-time.

In a final step, we remove the candidates that do not yield neighboring vertices. For this, we first
solve a linear program to compute a hyperplane h separating v from the candidates in V cone; since
V cone is a finite subset of P \ {v}, such a hyperplane exists, and w.l.o.g. v = 0 and h = {x | xd = 1}.
Let C be the cone generated by the set V cone . We compute the extreme points of C ∩ {x | xd = 1},
giving us the extremal rays of C . Note that C ∩ {x | xd = 1} is called the vertex figure of P in v .
Finally, we remove every point from V cone that is not on an extremal ray.

The correctness of the algorithm relies on the following lemma.

Lemma 4. Let v be a vertex of P processed during Algorithm 1, where we assume w.l.o.g. that v = 0 and the
set V cone of candidates is separated from v by the hyperplane {x | xd = 1}.

A point w ∈ Rd is a neighbor of v if and only if w is on some extremal ray of the cone C generated by
V cone. Here, an extremal ray is a ray whose intersection with the hyperplane {xd = 1} is an extreme point of
the polytope C ∩ {x | xd = 1}.

Proof. Suppose that w is a neighbor of v . By construction, w ∈ V cone and {v, w} is an edge. The thesis
follows by the following well known fact about vertex figures. There is a bijection between edges of
P that contain v and extreme points of C ∩ {x | xd = 1} (Ziegler, 1995, Proposition 2.4). �

We now bound the time complexity of Algorithm 1.

Theorem 5. Given OPTP and a superset of edge directions D of a well-described polytope P ⊆ Rd with n
vertices, and m edges Algorithm 1 computes the edge-skeleton of P in oracle total polynomial-time

O
(

n|D|
(
O(〈P 〉 + 〈D〉) +LP(d3|D| (〈P 〉 + 〈D〉)) + d log n

))
,

where 〈D〉 is the binary encoding length of the vector set D.

146 I.Z. Emiris et al. / Journal of Symbolic Computation 73 (2016) 139–152
Proof. We call OPTP (x) to find the first vertex of P . Then, there are O (n) iterations. In each one, we
construct O (|D|) oracles for polytopes Q (e) of encoding length at most 〈P 〉 + 〈D〉. We also compute
the (at most n) extreme points from a set of at most |D| candidate points. This can be done by solving
|D| linear programs whose inequalities have coefficients that are in turn coordinates of vertices of the
Q (e)’s. By Lemma 1, these coordinates have encoding lengths bounded by 4d2(〈P 〉 + 〈D〉), and the
number of coefficients in each linear program is O (|D|d). At each vertex we have to test whether
the computed vertices and edges are new. In the course of the algorithm these tests are at most
O (m) = O (n|D|), where m the number of P edges. We can test whether a vertex (or an edge) is new
in O (d log n). �
3.1. Reverse search for edge-skeleton

We define a reverse search procedure based on (Avis and Fukuda, 1992) to optimize the space used
by Algorithm 1. Given a vertex of P , the set of adjacent edges can be constructed as described above.
Then we need to define a total order over the vertices of the polytope. Any generic vector c ∈ Rd

induces such an order on the vertices, i.e. the order of a vertex u is that of cT u. In other words, we
can define a reverse search tree on P with root the vertex v that maximizes cT v over all the vertices
of P , where c is the vector given to OPTP for initializing P . Technically, the genericity assumption on
c can be avoided by sorting the vertices w.r.t. the lexicographical ordering of their coordinates.

Reverse search also needs an adjacency procedure which, given a vertex v and an integer j, returns
the j-th adjacent vertex of v , as well as a local search procedure allowing us to move from any vertex to
its optimal neighbor w.r.t. the objective function. Both procedures can be implemented by computing
all the adjacent vertices of a given vertex of P as described above, and then returning the best (or
the j-th) w.r.t. the ordering induced by c.

The above procedures can be used by a reverse search variant of Algorithm 1 that traverses (for-
ward and backward) the reverse search tree while keeping in memory only a constant number of
P vertices and edges. On the contrary, both the original Algorithm 1 and the algorithm of Proposi-
tion 3 need to store all vertices of P whose number is exponential in d in the worst case. Note that
any algorithm should use space at least O (d|D|) to store the input set of edge directions. The above
discussion yields the following result (encoding length of P vertices comes from Lemma 1).

Corollary 6. Given OPTP and a superset of edge directions D, a variant of Algorithm 1 using reverse search
runs in space O (4d2〈P 〉 + 〈D〉) (additional to the input) while keeping the same asymptotic time complexity.

4. Applications

This section studies the performance of Algorithm 1 in certain classes of polytopes where we do
not assume that we know the set of edge directions a priori. To this end, we describe methods for
pre-computing a (super)set of the edge directions.

We start by describing the computation of the set of edge-directions in arbitrary polytopes
using the formulation of standard polytopes. Then we study two important classes of polytopes
where the number of edge directions can be efficiently precomputed and thus provide new, to-
tal polynomial-time algorithms for their representation by an edge-skeleton. In particular, we study
signed Minkowski sums, and resultant and secondary polytopes. We show that these polytopes are
well-described and naturally defined by optimization oracles, which provide a compact representation.

4.1. Standard polytopes

First we discuss the performance of Algorithm 1 on general polytopes. Any convex polytope
P = {x | Ax ≤ b} can be written as a linear projection of a polytope Q = {(x, y) | Ax + I y = b,

y ≥ 0}, where A ⊆ Rm×d and we introduce the slack variables y ∈ Rm and P = π(Q), by the
linear mapping π(x, y) = x. We can rewrite Q as the so-called standard polytope {x′ | Bx′ = b,

x′ ≥ 0}. The set E of edge directions of Q is covered by the set of circuits of B (cf. Lemma 2.13

I.Z. Emiris et al. / Journal of Symbolic Computation 73 (2016) 139–152 147
in Onn and Rothblum, 2004). Moreover, each edge direction of P is the projection of some direction
in E under the mapping π (cf. Lemma 2.4 in Onn and Rothblum, 2004). However, the number of
circuits of B will be exponential in d. On the other hand, for small dimensions Algorithm 1 could be
an efficient choice for edge-skeleton computation or vertex enumeration.

4.2. Signed Minkowski sums

Recall that the Minkowski sum of (convex) polytopes A, B ⊆Rd is defined as

A + B := {a + b | a ∈ A,b ∈ B}.
Following Schneider (1993) the Minkowski subtraction is defined as

A − B := {x ∈Rd | B + x ⊆ A}.
Here we consider a special case of Minkowski subtraction where B is a summand of A. Equivalently,
if A − B = C then A = B + C . A signed Minkowski sum combines Minkowski sums and subtractions,
namely

P = s1 P1 + s2 P2 + · · · + sr Pr, si ∈ {−1,1},
where all Pi are convex polytopes and so is P .

We also define the sum (or subtraction) of two optimization oracles as the Minkowski sum (or sub-
traction) of the resulting vertices. In particular, if OPTP (c) = v and OPTP ′ (c′) = v ′ for v , v ′ vertices of
P , P ′ respectively, then OPTP (c) +OPTP ′ (c) = v + v ′ and OPTP (c) −OPTP ′ (c) = v − v ′ . An optimization
oracle for the signed Minkowski sum is given by the signed sum of the optimization oracles of the
summands.

Lemma 7. If P1, . . . , Pr ⊂ Rd are given by optimization oracles, then we compute an optimization oracle for
signed Minkowski sum P = ∑r

i=1 si P i in O (r).

Proof. Assume w.l.o.g. that s1 = · · · = sk = 1 �= sk+1 = · · · = sr = −1. Then, given P = ∑r
i=1 si P i and

denoting P1 := ∑r
i=k+1 Pi and P2 := ∑k

i=1 Pi we have P + P1 = P2. It follows that OPTP+P1 (c) =
OPTP2 (c) for some vector c ∈Rd . Then OPTP (c) + OPTP1 (c) = OPTP2 (c) which follows from Minkowski
sum properties. Therefore, we can compute OPTP (c) = ∑r

i=1 siOPTPi (c) with r oracle calls to OPTPi for
i = 1, . . . , r. This yields a complexity of O (r) for OPTP since, by definition of oracle polynomial-time,
the oracle calls in every summand are of unit cost. �
Example 1. Here we illustrate the above definitions and constructions as well as the standard reduc-
tions from (Grötschel et al., 1993). Consider the polytopes P1, P2, P3, their signed Minkowski sum
P = P1 − P2 + P3, and its polar P∗ as shown in Fig. 1. Observe that P1 = P2 + S , where S is a square.
Assume that P1, P2, P3 are given by OPTP1 , OPTP2 , OPTP3 oracles.

Then, OPTP (c) = OPTP1 (c) − OPTP2 (c) + OPTP3 (c) for some vector c ∈ Rd . If P satisfies the require-
ments of Proposition 2 then, having access to OPTP (c), we compute SEPP (p) in oracle polynomial-
time for point p ∈ Rd . In particular, asking if p ∈ P is equivalent to asking if H := {x | pT x ≤ 1} is
a valid inequality for P∗ . The latter can be solved by computing the point cT in P∗ that maximizes
the inner product with the outer normal vector of H and test if it validates H . If this happens then
SEPP (p) returns that p ∈ P , otherwise it returns p /∈ P with separating hyperplane {x | cx = 1}.

Let n denote the number of vertices of P . An oracle for P is provided by Lemma 7. Then, the entire
polytope can be reconstructed, and both V- and H-representations can be found by Proposition 8.

Proposition 8. (See Emiris et al., 2013.) Given OPTP for P ⊆ Rd, its V- and H-representations as well as a
triangulation T of P can be computed in

148 I.Z. Emiris et al. / Journal of Symbolic Computation 73 (2016) 139–152
Fig. 1. Signed Minkowski sum oracles.

O (d5n|T |2) arithmetic operations, and O (n + f) calls to OPTP ,

where n and f are the number of vertices and facets of P , respectively, and |T | the number of d-dimensional
simplices of T .

Corollary 9. Given optimization oracles for P1, . . . , Pr ⊆ Rd, we construct the V- and H-representations, and
a triangulation T of the signed Minkowski sum P = P1 + s2 P2 + · · · + sr Pr, si ∈ {−1, 1} in output sensitive
complexity, namely O (d5n|T |2 + (n + f)r), where n, f are the number of vertices and facets in P and |T | the
number of full-dimensional simplices of T .

In the above complexity the number of d-dimensional simplices of the computed triangulation
T can be exponential in d which is essentially given by the Upper Bound Theorem for spheres, i.e.
|T | = O (n(d+1)/2) (Stanley, 2004). This stresses the need for total polynomial-time algorithms for the
edge-skeleton of P . Note that it is not assumed that the polytopes are well-described. But we assume
the input contains a superset of all edges for each Pi . In one of the most important cases where
we are given the vertices of all summands Pi , we can compute all edges in each Pi by solving a
linear program for each pair of vertices. Each such pair defines a candidate edge. Hence, the overall
computation of the edges of Pi ’s is polynomial.

Corollary 10. Given optimization oracles for well-described P1, . . . , Pr ⊆ Rd, and supersets of their edge
directions D1, . . . , Dr , the edge-skeleton of the signed Minkowski sum P can be computed in oracle total
polynomial-time by Algorithm 1.

Proof. To be able to apply Algorithm 1, first we should show that P is well-described. Let 〈Pmax〉
be the maximum encoding length of summands P1, . . . , Pr . Then by Lemma 1, the encoding length
of the coordinates of summand vertices is 4d2〈Pmax〉. Thus, 4d2〈Pmax〉 + 〈r〉 is the encoding length
of the coordinates of P vertices. Finally, 〈P 〉 = d + 12d4〈Pmax〉 + 3d2〈r〉 by Lemma 1. Now OPTP is
computed by Lemma 7 in O (r). The superset of the edge directions of P is D = ⋃

si>0 Di , because
D(P1 − P2) ⊂ D(P1) since P1 − P2 = P3 ⇔ P1 = P2 + P3. �

Our algorithm assumes that, in the Minkowski subtraction A − B , B is a summand of A and does
not verify this assumption.

I.Z. Emiris et al. / Journal of Symbolic Computation 73 (2016) 139–152 149
4.3. Secondary and resultant polytopes

The secondary polytope 	 of a set of d points A = {p1, . . . , pd} ⊂ Zk is a fundamental object since
it expresses the triangulations of conv(A) via a polytope representation. For any triangulation T of
conv(A), define vector φT ∈ Rd with i-coordinate

φT (i) =
∑

σ∈T | pi∈vtx(σ)

vol(σ), (1)

summing over all simplices σ of T having pi as a vertex, where vtx(σ) is the vertex set of simplex σ ,
and i ∈ {1, . . . , d}. Now the secondary polytope 	(A), or just 	, is defined as the convex hull of φT

for all triangulations T . A famous theorem of Gelfand et al. (1994), which is also the central result
in (De Loera et al., 2010), states that there is a bijection between the vertices of 	 and the regular
triangulations of conv(A). This extends to a bijection between the face poset of 	 and the poset of
regular subdivisions of conv(A). Moreover, 	, although in ambient space Rd , has actual dimension
dim() = d − k − 1.

Let us now consider the Newton polytope of resultants, or resultant polytopes, for which optimiza-
tion oracles provide today the only plausible approach for their computation (Emiris et al., 2013).

Let us consider sets A0, . . . , Ak ⊂ Zk . In the algebraic setting, these are the supports of k + 1
polynomials in k variables. Let the Cayley set be defined by

A :=
k⋃

j=0

(A j × {e j}) ⊂ Z2k,

where e0, . . . , ek form an affine basis of Zk . Clearly, each point in A corresponds to a unique point
in some Ai . The (regular) triangulations of A are in bijective correspondence with the (regular) fine
mixed subdivisions of the Minkowski sum A0 + · · ·+ Ak (Gelfand et al., 1994). Mixed subdivisions are
those where all cells are Minkowski sums of convex hulls of subsets of the Ai . A mixed subdivision is
fine if, for every cell, the sum of its summands’ dimensions equals the dimension of the cell.

Let d := ∑k
j=0 |A j |, then given triangulation T of conv(A), define vector ρT ∈ Rd with i-coordinate

ρT (i) :=
∑

i-mixed σ∈T

vol(σ), (2)

where i ∈ {1, . . . , d}. A simplex σ is called i-mixed if it contains pi ∈ A
 for some
 ∈ {1, . . . , k} and
exactly 2 points from each A j , where j ranges over {0, 1, . . . , k} − {
}. The resultant polytope R is
defined as the convex hull of ρT for all triangulations T . Similarly with the secondary polytope, it
is in ambient space Rd but has dimension dim(R) = d − 2k − 1 (Gelfand et al., 1994). There is a
surjection, i.e. many to one relation, from the regular triangulations of conv(A) to the vertices of R .

Example 2. Let A0 = {{0}, {2}}, A1 = {{0}, {1}, {2}}, then the Cayley set will be A = {{0, 0}, {2, 0}, {0, 1},
{1, 1}, {2, 1}}. The 5 vertices of the secondary polytope 	(A) are computed using equation (1):

φ(T1) = (2,4,2,0,4),

φ(T2) = (4,2,4,0,2),

φ(T3) = (4,2,3,2,1),

φ(T4) = (3,3,1,4,1),

φ(T5) = (2,4,1,2,3),

and the 3 vertices of the resultant polytope N(R) are computed using equation (2):

150 I.Z. Emiris et al. / Journal of Symbolic Computation 73 (2016) 139–152
Fig. 2. Secondary and resultant polytopes.

ρ(T1) = (0,2,0,0,2),

ρ(T2) = (2,0,2,0,0),

ρ(T3) = (2,0,2,0,0),

ρ(T4) = (1,1,0,2,0),

ρ(T5) = (0,2,0,0,2).

Note that there are two pairs of triangulations that yield one resultant vertex each. Fig. 2 illustrates
this example.

We consider k fixed because in practice it holds k � d � n, where n stands for the number of
polytope vertices. Note that R is computed as a full-dimensional polytope in a space of its intrinsic
dimension (Emiris et al., 2013) and this approach extends to 	.

Computing the V-representation of 	 and R by the algorithm in (Emiris et al., 2013) is not total
polynomial. In fact, the complexity depends on the number of polytope vertices and facets, but also
on the number of simplices in a triangulation of the polytope (see Proposition 8). However, we show
that Algorithm 1 computes 	 and R in oracle total polynomial-time.

Lemma 11. Both 	 and R are well-described polytopes.

Proof. For the case of 	, given A ∈ Zk , let 〈A〉 be its encoding length and α := vol(conv(A)). It is clear
that α = O (〈A〉k) and thus 〈α〉 = O (k〈A〉). For each triangulation T each coordinate of φT is upper
bounded by α, since the sum of the volumes of its adjacent simplices cannot exceed vol(conv(A)).
This bound is tight for the points a ∈ A of a regular triangulation T where the simplices containing a
partition conv(A). It follows that the encoding length of 	 vertices is 〈α〉 and thus 〈	〉 = 4n2〈α〉 +d =
O (dn2〈A〉) by Lemma 1. Similarly, we bound the encoding length of ρT which yields that R is also a
well-described polytope. �

In the sequel, we characterize the set of edge directions of 	 and R . The edge directions of
both 	, R can be computed by enumerating circuits of A. More specifically, circuit enumeration
suffices to compute the edge vectors, i.e. both directions and lengths of the edges.

We first give some fundamental definitions from combinatorial geometry. For a detailed presenta-
tion we recommend (De Loera et al., 2010). A circuit C ⊆ A is a minimum affinely dependent subset

I.Z. Emiris et al. / Journal of Symbolic Computation 73 (2016) 139–152 151
of A. It holds that conv(C) has exactly two triangulations C+ , C− . The operation of switching from
one triangulation to another is called flip. Triangulation T of A, which equals C+ when restricted on
circuit C , is supported on C if, by flipping C+ to C− , we obtain another triangulation T ′ of A. The
dimension of a circuit is the dimension of its convex hull. If A is in generic position, then all circuits
C are full dimensional. Then all the edges of 	 correspond to full dimensional circuits. If A is not in
generic position, some edges may correspond to lower-dimensional circuits.

In the case of R , where A = ⋃k
j=0 A j , a circuit C is called cubical if and only if |C ∩ A j | ∈ {0, 2},

j = 0, . . . , k. If A is in generic position, all the edges of R correspond to full dimensional cubical cir-
cuits (Sturmfels, 1994).

Lemma 12. Given A ∈ Zk in generic position, we compute the set of edge directions of 	 in O (dk+2). Given
A ∈ Z2k in generic position the set of edge directions of R is computed in O (d2k+2). In both cases, genericity of
A is checked within the respective time complexity.

Proof. For 	, we enumerate all
(|A|

k+2

)
circuits in O (dk+2), obtaining the set of all edge vectors. Gener-

icity of A is established by checking whether all
(|A|

k

)
subsets, k ∈ {1, . . . , k + 1}, are independent. This

is in O (dk+1) for k = O (1).
In the case of R , where A = ⋃k

j=0 A j , a flip on T is cubical if and only if it is supported on a cubical
circuit C . In generic position, |C | = 2k + 2. For those supporting cubical flips, |C ∩ A j | = 2, j = 0, . . . , k.
Every edge dC of R is supported on cubical flip C , where dC (a) equals ρC+ (a) −ρC− (a), if a ∈ C , and 0
otherwise (Sturmfels, 1994). Given A, all such circuits are enumerated in

(|A|
2k+2

) = O (d2k+2); a better
bound is O (t2k+2) if t bounds |A j|, j = 0, . . . , k. �
Lemma 13. (See Emiris et al., 2013.) For k + 1 pointsets in Zk of total cardinality d, optimization over R
takes polynomial-time, when k is fixed.

Corollary 14. In total polynomial-time, we compute the edge-skeleton of 	 ⊂ Rd, given A ∈ Zk in generic
position, and the edge-skeleton of R, given A ∈Z2k in generic position.

Proof. Since by Lemma 11 	, R are well-bounded, optimization oracles are available by Lemma 13
and the set of edge directions by Lemma 12, the edge-skeletons of 	, R can be computed by Algo-
rithm 1 in oracle total polynomial-time. Moreover, since the optimization oracle is polynomial-time
this yields a (proper) total polynomial-time algorithm for 	, R . �

Following Lemma 12, for 	, R we also obtain their edge lengths. This can lead to a more efficient
edge-skeleton algorithm on the real RAM.

Remark 1. Our results readily extend to the Newton polytope of discriminants, or discriminant poly-
topes. This follows from the fact that these polytopes can be written as signed Minkowski sums of
secondary polytopes (Gelfand et al., 1994).

5. Concluding remarks

We have presented the first total polynomial-time algorithm for computing the edge-skeleton of a
polytope, given an optimization oracle, and a set of directions that contains the polytope’s edge direc-
tions. Our algorithm yields the first (weakly) total polynomial-time algorithms for the edge-skeleton
(and vertex enumeration) of signed Minkowski sum, and resultant polytopes.

An open question is a strongly total polynomial-time algorithm for the edge-skeleton problem.
Another is to solve the edge-skeleton problem without edge directions; characterizations of edge
directions for polytopes in H-representation are studied in (Onn et al., 2005). It is also interesting
to investigate new classes of convex combinatorial optimization problems where our algorithm runs
in polynomial time.

152 I.Z. Emiris et al. / Journal of Symbolic Computation 73 (2016) 139–152
Acknowledgments

The authors thank K. Fukuda, C. Müller, S. Stich for discussions and bibliographic suggestions.

References

Ardila, F., Benedetti, C., Doker, J., 2010. Matroid polytopes and their volumes. Discrete Comput. Geom. 43 (4), 841–854.
Avis, D., Bremner, D., Seidel, R., 1997. How good are convex hull algorithms? Comput. Geom. 7, 265–301.
Avis, D., Fukuda, K., 1992. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete

Comput. Geom. 8, 295–313.
Billera, L., Filliman, P., Sturmfels, B., 1990. Constructions and complexity of secondary polytopes. Adv. Math. 83 (2), 155–179.
Boissonnat, J.-D., Devillers, O., Hornus, S., 2009. Incremental construction of the Delaunay triangulation and the Delaunay graph

in medium dimension. In: ACM Symp. on Comp. Geometry, pp. 208–216.
Bussieck, M., Lübbecke, M., 1998. The vertex set of a 0/1-polytope is strongly p-enumerable. Comput. Geom. 11 (2), 103–109.
De Loera, J., Hemmecke, R., Onn, S., Rothblum, U., Weismantel, R., 2009. Convex integer maximization via Graver bases. J. Pure

Appl. Algebra 213 (8), 1569–1577.
De Loera, J., Rambau, J., Santos, F., 2010. Triangulations: Structures for Algorithms and Applications. Algorithms and Computation

in Mathematics, vol. 25. Springer.
Edmonds, J., Pulleyblank, W., Lovász, L., 1982. Brick decompositions and the matching rank of graphs. Combinatorica 2 (3),

247–274.
Emiris, I., Fisikopoulos, V., Konaxis, C., Peñaranda, L., 2013. An oracle-based, output-sensitive algorithm for projections of resul-

tant polytopes. Int. J. Comput. Geom. Appl. 23, 397–423.
Fukuda, K., 2004. From the zonotope construction to the Minkowski addition of convex polytopes. J. Symb. Comput. 38.
Fukuda, K., Weibel, C., 2005. Computing all faces of the Minkowski sum of V-polytopes. In: Canad. Conf. Comp. Geom.,

pp. 253–256.
Gelfand, I., Kapranov, M., Zelevinsky, A., 1994. Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Boston.
Gritzmann, P., Hufnagel, A., 1999. On the algorithmic complexity of Minkowski’s reconstruction problem. J. Lond. Math. Soc. 2,

5–9.
Gritzmann, P., Sturmfels, B., 1993. Minkowski addition of polytopes: computational complexity and applications to Gröbner

bases. SIAM J. Discrete Math. 6 (2), 246–269.
Grötschel, M., Lovász, L., Schrijver, A., 1993. Geometric Algorithms and Combinatorial Optimization, 2nd edition. Algorithms and

Combinatorics, vol. 2. Springer.
Huggins, P., 2006. ib4e: a software framework for parametrizing specialized LP problems. In: Iglesias, A., Takayama, N. (Eds.),

Mathematical Software – ICMS. In: Lect. Notes Comput. Sci., vol. 4151. Springer, pp. 245–247.
Joswig, M., Kaibel, V., Körner, F., 2002. On the k-systems of a simple polytope. Isr. J. Math. 129 (1), 109–117.
Khachiyan, L., 1979. A polynomial algorithm in linear programming. Sov. Math. Dokl. 20 (1), 191–194.
Malajovich, G., 2014. Computing mixed volume and all mixed cells in quermassintegral time. ArXiv e-prints.
Masada, T., Imai, H., Imai, K., 1996. Enumeration of regular triangulations. In: ACM Symp. on Comp. Geometry. SoCG ’96,

pp. 224–233.
McMullen, P., 1971. The maximum numbers of faces of a convex polytope. Mathematika 17, 179–184.
Michiels, T., Cools, R., 2000. Decomposing the secondary Cayley polytope. Discrete Comput. Geom. 23, 367–380.
Onn, S., Rothblum, U., 2004. Convex combinatorial optimization. Discrete Comput. Geom. 32 (4), 549–566.
Onn, S., Rothblum, U., 2007. The use of edge-directions and linear programming to enumerate vertices. J. Comb. Optim. 14,

153–164.
Onn, S., Rothblum, U., Tangir, Y., 2005. Edge-directions of standard polyhedra with applications to network flows. J. Glob. Op-

tim. 33 (1), 109–122.
Orevkov, S., 1999. The volume of the Newton polytope of a discriminant. Russ. Math. Surv. 54 (5), 1033–1034.
Pfeifle, J., Rambau, J., 2003. Computing triangulations using oriented matroids. In: Joswig, M., Takayama, N. (Eds.), Algebra,

Geometry and Software Systems. Springer, Berlin, Heidelberg, pp. 49–75.
Schneider, R., 1993. Convex Bodies: The Brunn–Minkowski Theory. Cambridge University Press.
Stanley, R., 2004. Combinatorics and Commutative Algebra. Birkhäuser, Boston.
Sturmfels, B., 1994. On the Newton polytope of the resultant. J. Algebr. Comb. 3, 207–236.
Ziegler, G., 1995. Lectures on Polytopes. Springer.

http://refhub.elsevier.com/S0747-7171(15)00042-5/bib417264696C613130s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib4176697353656964656Cs1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib41766973463932s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib41766973463932s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib42696C6C65726131393930313535s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib426F69446576486F723039s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib426F69446576486F723039s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib427573736965636B3938s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib44654C6F6572613230303931353639s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib44654C6F6572613230303931353639s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib44654C52616D53616Es1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib44654C52616D53616Es1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib45504C3832s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib45504C3832s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib45464B503132s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib45464B503132s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib46756B7564613034s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib46756B756461573035s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib46756B756461573035s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib474B5As1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib477269747A6D616E6E39396F6E746865s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib477269747A6D616E6E39396F6E746865s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib477269747A6D616E6E3933s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib477269747A6D616E6E3933s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib474C533933s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib474C533933s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib4875673036s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib4875673036s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib4A6F737769674B616962656C4B3032s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib4B686131s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib4D61736164613936s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib4D61736164613936s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib4D634D756C6C656Es1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib4D6963436F6F3030s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib4F6E6E523034s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib526F7468626C756D4F6E6Es1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib526F7468626C756D4F6E6Es1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib526F7468626C756D4F6E6E5F66696E646564676573s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib526F7468626C756D4F6E6E5F66696E646564676573s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib6469736372696D5F766F6Cs1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib544F50434F4D32s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib544F50434F4D32s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib5363686E65696465723933s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib7374616E6C657932303034636F6D62696E61746F72696373s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib53743934s1
http://refhub.elsevier.com/S0747-7171(15)00042-5/bib5A6965676C6572s1

	Efﬁcient edge-skeleton computation for polytopes deﬁned by oracles
	1 Introduction
	1.1 Applications
	1.2 Our contribution
	1.3 Outline

	2 Well-described polytopes and oracles
	3 Computing the edge-skeleton
	3.1 Reverse search for edge-skeleton

	4 Applications
	4.1 Standard polytopes
	4.2 Signed Minkowski sums
	4.3 Secondary and resultant polytopes

	5 Concluding remarks
	Acknowledgments
	References

