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In general dimension, there is no known total polynomial algo-
rithm for either convex hull or vertex enumeration, i.e. an algo-
rithm whose complexity depends polynomially on the input and 
output sizes. It is thus important to identify problems and poly-
tope representations for which total polynomial-time algorithms 
can be obtained. We offer the first total polynomial-time algorithm 
for computing the edge-skeleton—including vertex enumeration—
of a polytope given by an optimization or separation oracle, where 
we are also given a superset of its edge directions. We also of-
fer a space-efficient variant of our algorithm by employing reverse 
search. All complexity bounds refer to the (oracle) Turing machine 
model. There is a number of polytope classes naturally defined 
by oracles; for some of them neither vertex nor facet representa-
tion is obvious. We consider two main applications, where we ob-
tain (weakly) total polynomial-time algorithms: Signed Minkowski 
sums of convex polytopes, where polytopes can be subtracted 
provided the signed sum is a convex polytope, and computation 
of secondary, resultant, and discriminant polytopes. Further ap-
plications include convex combinatorial optimization and convex 
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integer programming, where we offer a new approach, thus remov-
ing the complexity’s exponential dependence in the dimension.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Convex polytopes are fundamental geometric objects in science and engineering. Their applications 
are ranging from theoretical computer science to optimization and algebraic geometry. Polytopes in 
general dimension admit a number of alternative representations. The best known, explicit represen-
tations for a bounded polytope P are either the set of its vertices (V-representation) or a bounded 
intersection of halfspaces (H-representation). Switching between the two representations constitutes 
the convex hull and vertex enumeration problems. A linear programming problem (LP) on P consists 
in finding a vertex of P that maximizes the inner product with a given objective vector c. This is very 
easy if P is in V-representation; even if P is in H-representation, this LP can be solved in polynomial 
time.

In general dimension, there is no polynomial-time algorithm for either convex hull or vertex 
enumeration, since the output size can be exponential in the worst case by the upper bound the-
orem (McMullen, 1971). We therefore wish to take the output size into account and say that an 
algorithm runs in total polynomial time if its time complexity is bounded by a polynomial in the input 
and output size. There is no known total polynomial-time algorithm for either convex hull or ver-
tex enumeration. Avis et al. (1997) identify, for each known type of convex hull algorithm, explicit 
families of polytopes for which the algorithms run in superpolynomial time.

However, finding the vertices of the convex hull of a given point set reduces to LP and has 
thus polynomial complexity in the input. The algorithm in (Avis and Fukuda, 1992) solves, in total 
polynomial-time, vertex enumeration for simple polytopes and convex hull for simplicial polytopes. 
For 0/1-polytopes a total polynomial-time algorithm for vertex enumeration is presented in (Bussieck 
and Lübbecke, 1998), where a 0/1-polytope is such that all vertices have coordinates 0 or 1. In this 
paper we establish another case where total polynomial-time algorithms exist.

An important explicit representation of a polytope is the edge-skeleton (or 1-skeleton), which is the 
graph of polytope vertices and edges, but none of the faces of dimension larger than one. For simple 
polytopes, the edge-skeleton determines the complete face lattice (see Joswig et al., 2002 and the 
references therein), but in general, this is false. The edge-skeleton is a useful and compact represen-
tation employed in different problems, e.g. in computing general-dimensional Delaunay triangulations 
of a given pointset: Boissonnat et al. (2009) show how the edge-skeleton suffices for point location 
by allowing them to recover only the needed full-dimensional simplices of the triangulation. Another 
application is in mixed volume computation (Malajovich, 2014).

In this paper we study the case where a polytope P is given by an implicit representation, where 
the only access to P is a black box subroutine (oracle) that solves the LP problem on P for a given 
vector c. Then, we say that P is given by an optimization, or LP oracle. Given such an oracle, the 
entire polytope can be reconstructed, and both V- and H-representations can be found using the 
Beneath–Beyond method (Emiris et al., 2013; Huggins, 2006), although not in total polynomial-time.

Another important implicit representation of P is obtained through a separation oracle (Section 2). 
Celebrated results of Khachiyan (1979) as well as Grötschel et al. (1993) show that separation and 
optimization oracles are polynomial-time equivalent (Proposition 2). Many important results in com-
binatorial optimization use the fact that the separation oracle implies the optimization oracle. In our 
study, we also need the other direction: Given an optimization oracle, compute a separation oracle 
for P .

The problem that we study is closely related to vertex enumeration. We are given an optimiza-
tion oracle for a polytope P and a set of vectors that is guaranteed to contain the directions of all 
edges of P ; edge directions are given by unit vectors. We are asked to compute the edge-skeleton 
of P so the vertices are also computed. This is similar to the fundamental Minkowski reconstruction 
problem, e.g. (Gritzmann and Hufnagel, 1999), except that, instead of information on the facets, we 
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have information about the 1-dimensional faces (and an oracle). The problem of the reconstruction of 
a simple polytope by its edge-skeleton graph is studied in (Joswig et al., 2002).

The most relevant previous work is an algorithm for vertex enumeration of P , given the same 
input: an optimization oracle and a superset D of all edge directions (Onn and Rothblum, 2007)
(cf. Proposition 3). It runs in total polynomial-time in fixed dimension. The algorithm computes the 
zonotope Z of D , then computes an arbitrary vector in the normal cone of each vertex of Z and calls 
the oracle with this vector. It outputs all vertices without further information. Computing the edges 
from n vertices can be done by O (n2) calls to LP.

1.1. Applications

Edge-skeleton computation given an oracle and a superset of edge directions naturally appears in 
many applications. In Section 4 we offer new efficient algorithms for the first two applications below.

One application is the signed Minkowski sum problem where, besides addition, we also allow a 
restricted case of Minkowski subtraction. Let A − B be polytope C such that A can be written as a sum 
A = B + C . In other words, a signed Minkowski sum equality such as P − Q + R − S = T should be 
interpreted as P + R = Q + S + T . Such sums are motivated by the fact that resultant and discriminant 
polytopes (to be defined later) are written as signed sums of secondary polytopes (Michiels and Cools, 
2000), (Gelfand et al., 1994, Thm. 11.1.3). Also, matroid polytopes and generalized permutahedra can 
be written as signed Minkowski sums (Ardila et al., 2010). We assume that the summands are given 
by optimization oracles and the supersets of their edge directions. This is natural since we show that 
these supersets can be precomputed for resultant and secondary polytopes.

Minkowski sums have been studied extensively. Given r V-polytopes in Rd , Gritzmann and Sturm-
fels (1993) deal with the various Minkowski sum problems that occur if they regard none, one, or 
both of r and d as constants. They give polynomial algorithms for fixed d regardless of the input rep-
resentation. For varying d they show that no polynomial-time algorithm exists except for the case of 
fixed r in the binary model of computation. Fukuda (2004), extended in (Fukuda and Weibel, 2005), 
gives an LP-based algorithm for the Minkowski sum of polytopes in V-representation whose complex-
ity, in the binary model of computation, is total polynomial, and depends polynomially on δ, which 
is the sum of the maximum vertex degree in each summand. However, we are not aware of any al-
gorithm for signed Minkowski sums and it is not obvious how the above algorithms for Minkowski 
sums can be extended to the signed case.

The second application is resultant, secondary as well as discriminant polytopes. For resultant 
polytopes at least, the only plausible representation seems to be via optimization oracles (Emiris 
et al., 2013). Resultants are fundamental in computational algebraic geometry since they generalize 
determinants to nonlinear systems (Sturmfels, 1994; Gelfand et al., 1994). The Newton polytope R
of the resultant, or resultant polytope, is the convex hull of the exponent vectors corresponding to 
nonzero terms. A resultant is defined for k + 1 pointsets in Zk . If R lies in Rd , the total number of 
input points is d + 2k + 1. If n is the number of vertices in R , typically n � d � k, so k is assumed 
fixed. A polynomial-time optimization oracle yields an output-sensitive algorithm for the computation 
of R (Emiris et al., 2013) (cf. Lemma 13).

This approach can also be used for computing the secondary and discriminant polytopes, defined 
in (Gelfand et al., 1994); cf. (De Loera et al., 2010) on secondary polytopes. The secondary polytope of 
a pointset is a fundamental object since it offers a realization of the graph of regular triangulations of 
the pointset. A total polynomial-time algorithm for the secondary polytope when k is fixed is given 
in (Masada et al., 1996). A specific application of discriminant polytopes is discussed in (Orevkov, 
1999), where the author establishes a lower bound on the volume of the discriminant polytope of a 
multivariate polynomial, thus refuting a conjecture by E.I. Shustin on an asymptotic upper bound for 
the number of real hypersurfaces.

The size of all these polytopes is typically exponential in d: the number of vertices of R is 
O (d2d2

) (Sturmfels, 1994), and the number of j-faces (for any j) of the secondary polytope is 
O (d(d−1)2

), which is tight if d is fixed (Billera et al., 1990).
More applications of our methods exist. One is in convex combinatorial optimization: given F ⊂ 2N

with N = {1, . . . , n}, a vectorial weighting w : N → Qd , and a convex functional c : Qd → Q, find 
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F ∈ F of maximum value c(w(F )). This captures a variety of (hard) problems studied in operations 
research and mathematical programming, including quadratic assignment, scheduling, reliability, bar-
gaining games, and inventory management, see (Onn and Rothblum, 2004) and the references therein. 
The standard linear combinatorial optimization problem is the special case with d = 1, w : N → Q, 
and c : Q → Q : x �→ x being the identity. As shown in (Onn and Rothblum, 2004), a convex com-
binatorial optimization problem can be solved in polynomial-time for fixed d, if we know the edge 
directions of the polytope given by the convex hull of the incidence vectors of the sets in F .

Another application is convex integer maximization, where we maximize a convex function over the 
integer hull of a polyhedron. In (De Loera et al., 2009), the vertex enumeration algorithm of Onn and 
Rothblum (2007)—based on the knowledge of edge directions—is used to come up with polynomial al-
gorithms for many interesting cases of convex integer maximization, such as multiway transportation, 
packing, vector partitioning and clustering. A set that contains the directions of all edges is computed 
via Graver bases, and the enumeration of all vertices of a projection of the integer hull suffices to find 
the optimal solution.

1.2. Our contribution

We present the first total polynomial-time algorithm for computing the edge-skeleton of a poly-
tope, given an optimization oracle, and a set of directions that contains the polytope’s edge directions. 
The polytope is assumed to have some (unknown) H-representation with an arbitrary number of in-
equalities, but each of known bitsize, as shall be specified below. Our algorithm also works if the 
polytope is given by a separation oracle. All complexity bounds refer to the (oracle) Turing machine 
model, thus leading to (weakly) polynomial-time algorithms when the oracle is of polynomial-time 
complexity. By employing the reverse search method of (Avis and Fukuda, 1992) we offer a space-
efficient variant of our algorithm. It remains open whether there is also a strongly polynomial-time 
algorithm in the real RAM model of computation.

Our algorithm yields the first (weakly) total polynomial-time algorithms for the edge-skeleton (and 
vertex enumeration) of signed Minkowski sum, and resultant polytopes (for fixed k). For both polytope 
classes, optimization oracles are naturally and efficiently constructed, whereas it is not straightforward 
to obtain the more commonly employed membership or separation oracles. For signed Minkowski 
sum we assume that we know the supersets of edge directions for summands. This includes the 
important cases where the summands are V-polytopes, and secondary polytopes. For resultant poly-
topes, optimization oracles offer the most efficient known representation. Our results on resultant 
polytopes extend to secondary polytopes, as well as discriminant polytopes. Recall that a different 
approach in the same complexity class is known for secondary polytopes (Pfeifle and Rambau, 2003;
Masada et al., 1996).

Regarding the problems of convex combinatorial optimization and convex integer programming 
the current approaches use the algorithm of Onn and Rothblum (2007) whose complexity has an 
exponential dependence on the dimension (Proposition 3). The utilization of our algorithm instead 
offers an alternative approach while removing the exponential dependence on the dimension.

1.3. Outline

The next section specifies our theoretical framework. Section 3 introduces polynomial-time algo-
rithms for the edge-skeleton. Section 4 applies our results to signed Minkowski sums, as well as 
resultant and secondary polytopes. We conclude with open questions.

2. Well-described polytopes and oracles

This section describes our theoretical framework and relates the most relevant oracles. We start 
with the notation used in this paper followed by some basics from polytope theory; for a detailed 
presentation we refer to (Ziegler, 1995).

We denote by d the ambient space dimension and n the number of vertices of the output 
(bounded) polytope; k denotes dimension when it is fixed (e.g. input space for resultant polytopes); 
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conv(A) is the convex hull of A. Moreover, ϕ is an upper bound for the encoding length of every 
inequality defining a well-described polytope (see the next section); 〈X〉 denotes the binary encoding 
size of an explicitly given object X (e.g., a set of vectors). For a well-described and implicitly given 
polytope P ⊆ Rd , we will define 〈P 〉 := d + ϕ . Let O : R → R denote a polynomial such that the 
oracle conversion algorithms of Proposition 2 all run in oracle polynomial-time O(〈P 〉) for a given 
well-described polytope P . The polynomial LP : R → R is such that LP(〈A〉 + 〈b〉 + 〈c〉) bounds the 
runtime of maximizing cT x over the polyhedron {x | Ax ≤ b}.

A convex polytope P ⊆ Rd can be represented as the convex hull of a finite set of points, called the 
V-representation of P . In other words, P = conv(A), where A = {p1, . . . , pn} ⊆ Rd . Another, equivalent 
representation of P is as the bounded intersection of a finite set of halfspaces or linear inequalities, 
called the H-representation of P . That is, P = {x | Ax ≤ b}, A ⊆ Rm×d , x ∈ Rd , b ∈ Rm . Given P , an 
inequality or a halfspace {aT x ≤ β} (where a ∈ Rd , β ∈ R) is called supporting if aT x ≤ β for all x ∈ P
and aT x = β for some x ∈ P . The set {x ∈ P | aT x = b} is a face of P .

Definition 1. The polar dual polytope of P is defined as:

P∗ := {c ∈Rd : cT x ≤ 1 for all x ∈ P } ⊆Rd,

where we assume that the origin 0 ∈ int(P ), the relative interior of P , i.e. 0 is not contained in any 
face of P of dimension < d.

For our results, we need to assume that the output polytope is well-described (Grötschel et al., 
1993, Definition 6.2.2). This will be the case in all our applications.

Definition 2. A rational polytope P ⊆ Rd is well-described (with a parameter ϕ that we need to know 
explicitly) if there exists an H-representation for P in which every inequality has encoding length at 
most ϕ . The encoding length of a well-described polytope is 〈P 〉 = d + ϕ . Similarly, the encoding length
of a set of vectors D ⊆ Rd is 〈D〉 = d + ν if every vector in D has encoding length at most ν .

In defining P , the inequalities are not known themselves, and we make no assumptions about 
their number. The following lemma connects the encoding length of inequalities with the encoding 
length of vertices.

Lemma 1. (See Grötschel et al., 1993, Lemma 6.2.4.) Let P ⊆ Rd. If every inequality in an H-rep-
resentation for P has encoding length at most ϕ , then every vertex of P has encoding length at most 4d2ϕ . 
If every vertex of P has encoding length at most ν , then every inequality of its H-representation has encoding 
length at most 3d2ν .

The natural model of computation when P is given by an oracle is that of an oracle Turing ma-
chine (Grötschel et al., 1993, Section 1.2). This is a Turing machine that can (in one step) replace any 
input to the oracle (to be prepared on a special oracle tape) by the output resulting from calling the 
oracle, where we assume that the output size is polynomially bounded in the input size. An algorithm 
is oracle polynomial-time if it can be realized by a polynomial-time oracle Turing machine. Moreover it 
is total polynomial-time if its time complexity is bounded by a polynomial in the input and output size.

In this paper, we consider three oracles for polytopes; they can more generally be defined for (not 
necessarily bounded) polyhedra, but we do not need this:

• Optimization (OPTP (c)): Given vector c ∈ Rd , either find a point y ∈ P maximizing cT x over all 
x ∈ P , or assert P = ∅.

• Violation (VIOLP (c, γ )): Given vector c ∈ Rd and γ ∈R, either find point y ∈ P such that cT y > γ , 
or assert that cT x ≤ γ for all x ∈ P .

• Separation (SEPP (y)): Given point y ∈ Rd , either certify that y ∈ P , or find a hyperplane that 
separates y from P ; i.e. find vector c ∈ Rd such that cT y > cT x for all x ∈ P .

The following is a main result of Grötschel et al. (1993) and the cornerstone of our method.
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Proposition 2. (See Grötschel et al., 1993, Theorem 6.4.9.) For a well-described polytope, any one of the 
three aforementioned oracles is sufficient to compute the other two in oracle polynomial-time. The runtime 
(polynomially) depends on the ambient dimension d and the bound ϕ for the maximum encoding length of an 
inequality in some H-representation of P .

For applications in combinatorial optimization, an extremely important feature is that the runtime 
does not depend on the number of inequalities that are needed to describe P . Even if this number is 
exponential in d, the three oracles are polynomial-time equivalent.

Another important corollary is that linear programs can be solved in polynomial-time. Indeed, an 
explicitly given (bounded coefficient) system Ax ≤ b, x ∈ Rd of inequalities defines a well-described 
polytope P , for which the separation oracle is very easy to implement in time polynomial in 〈P 〉; 
hence, the oracle polynomial-time algorithm for OPTP (c) becomes a (proper) polynomial-time algo-
rithm.

3. Computing the edge-skeleton

This section studies total polynomial time algorithms for the edge-skeleton of a polytope. We are 
given a well-described polytope P ⊆ Rd via an optimization oracle OPTP (c) of P . Moreover, we are 
given a superset D of all edge directions of P ; to be precise, we define

D(P ) :=
{

v − w

‖v − w‖ : v and w are adjacent vertices of P

}

to be the set of (unit) edge directions, and we assume that for every e ∈ D(P ), the set D contains 
some positive multiple te, t ∈R, t > 0. Slightly abusing notation, we write D ⊇ D(P ).

The goal is to efficiently compute the edge-skeleton of P , i.e. its vertices and the edges connecting 
the vertices. Even if D = D(P ), this set does not, in general, provide enough information for the task, 
so we need additional information about P ; here we assume an optimization oracle.

Vertex enumeration with this input has been studied in the real RAM model of computation where 
we count the number of arithmetic operations:

Proposition 3. (See Onn and Rothblum, 2007.) Let P ⊆ Rd be a polytope given by OPTP (c), and let D ⊇
D(P ) be a superset of the edge directions of P . The vertices of P are computed using O (|D|d−1) arithmetic 
operations and O (|D|d−1) calls to OPTP (c).

If P has n vertices, then |D(P )| ≤ (n
2

)
, and this is tight for neighborly polytopes in general 

position (Ziegler, 1995). This means that the bound of Proposition 3 is O  
(
n2d−2

)
, assuming that 

|D| = �(|D(P )|).
We show below that the edge-skeleton can be computed in oracle total polynomial-time for a 

well-described polytope, which possesses an (unknown) H-representation with encoding size ϕ . Thus, 
we show that the exponential dependence on d in Proposition 3 can be removed in the Turing ma-
chine model of computation, leading to a (weakly) total polynomial-time algorithm. It remains open 
whether there is also a strongly total polynomial-time algorithm with a total polynomial runtime 
bound in the real RAM model of computation.

The algorithm (Algorithm 1) is as follows. Using OPTP (c), we find some vertex v0 of P (this can be 
done even if OPTP (c) does not directly return a vertex Grötschel et al., 1993, Lemma 6.51, Edmonds 
et al., 1982, pp. 255–256).

We maintain sets V P , E P of vertices and their incident edges, along with a queue W ⊆ V P of 
the vertices for which we have not found all incident edges yet. Initially, W = {v0}, V P = E P = ∅. 
When we process the next vertex v from the queue, it remains to find its incident edges: equiva-
lently, the neighbors of v . To find the neighbors, we first build a set V cone of candidate vertices. We 
know that for every neighbor w of v , there must be an edge direction e such that w = v + te for 
suitable t > 0. More precisely, w is the point corresponding to maximum t in the 1-dimensional poly-
tope Q (e) := P ∩ {x | x = v + te, t ≥ 0}, where the latter equals the intersection of P with the ray in 



I.Z. Emiris et al. / Journal of Symbolic Computation 73 (2016) 139–152 145
Algorithm 1: Edge_Skeleton (OPTP , D)

Input : Optim. oracle OPTP (c), superset D of edge directions D(P )

Output: The edge-skeleton (and vertices) of P

Compute some vertex v0 ∈ P ;
V P ← ∅; W ← {v0}; E P ← ∅;
while W �= ∅ do

Choose the next element v ∈ W and remove it from W ;
V P ← V P

⋃{v};
V cone ← ∅;
foreach e ∈ D do

w ← argmax{v + te ∈ P , t ≥ 0};
if w �= v then

V cone ← V cone
⋃{w};

Remove non-vertices of P from V cone;
foreach w ∈ V cone do

if w /∈ V P then W ← W
⋃{w};

if {v, w} /∈ E P then E P ← E P
⋃{v, w};

return V P , E P ;

direction e and apex at v . Hence, by solving |D| linear programs, one for every e ∈ D , we can build a 
set V cone that is guaranteed to contain all neighbors of v . To solve these linear programs, we need to 
construct optimization oracles for Q (e). To do this, we first construct SEPP (y) from OPTP (c) in oracle 
polynomial-time according to Proposition 2. Thus, the construction of SEPQ (e)(y) is elementary, and 
since also Q (e) is well-described, we can obtain OPTQ (e)(c) in oracle polynomial-time.

In a final step, we remove the candidates that do not yield neighboring vertices. For this, we first 
solve a linear program to compute a hyperplane h separating v from the candidates in V cone; since 
V cone is a finite subset of P \ {v}, such a hyperplane exists, and w.l.o.g. v = 0 and h = {x | xd = 1}. 
Let C be the cone generated by the set V cone . We compute the extreme points of C ∩ {x | xd = 1}, 
giving us the extremal rays of C . Note that C ∩ {x | xd = 1} is called the vertex figure of P in v . 
Finally, we remove every point from V cone that is not on an extremal ray.

The correctness of the algorithm relies on the following lemma.

Lemma 4. Let v be a vertex of P processed during Algorithm 1, where we assume w.l.o.g. that v = 0 and the 
set V cone of candidates is separated from v by the hyperplane {x | xd = 1}.

A point w ∈ Rd is a neighbor of v if and only if w is on some extremal ray of the cone C generated by 
V cone. Here, an extremal ray is a ray whose intersection with the hyperplane {xd = 1} is an extreme point of 
the polytope C ∩ {x | xd = 1}.

Proof. Suppose that w is a neighbor of v . By construction, w ∈ V cone and {v, w} is an edge. The thesis 
follows by the following well known fact about vertex figures. There is a bijection between edges of 
P that contain v and extreme points of C ∩ {x | xd = 1} (Ziegler, 1995, Proposition 2.4). �

We now bound the time complexity of Algorithm 1.

Theorem 5. Given OPTP and a superset of edge directions D of a well-described polytope P ⊆ Rd with n
vertices, and m edges Algorithm 1 computes the edge-skeleton of P in oracle total polynomial-time

O
(

n|D|
(
O(〈P 〉 + 〈D〉) +LP(d3|D| (〈P 〉 + 〈D〉)) + d log n

))
,

where 〈D〉 is the binary encoding length of the vector set D.
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Proof. We call OPTP (x) to find the first vertex of P . Then, there are O (n) iterations. In each one, we 
construct O (|D|) oracles for polytopes Q (e) of encoding length at most 〈P 〉 + 〈D〉. We also compute 
the (at most n) extreme points from a set of at most |D| candidate points. This can be done by solving 
|D| linear programs whose inequalities have coefficients that are in turn coordinates of vertices of the 
Q (e)’s. By Lemma 1, these coordinates have encoding lengths bounded by 4d2(〈P 〉 + 〈D〉), and the 
number of coefficients in each linear program is O (|D|d). At each vertex we have to test whether 
the computed vertices and edges are new. In the course of the algorithm these tests are at most 
O (m) = O (n|D|), where m the number of P edges. We can test whether a vertex (or an edge) is new 
in O (d log n). �
3.1. Reverse search for edge-skeleton

We define a reverse search procedure based on (Avis and Fukuda, 1992) to optimize the space used 
by Algorithm 1. Given a vertex of P , the set of adjacent edges can be constructed as described above. 
Then we need to define a total order over the vertices of the polytope. Any generic vector c ∈ Rd

induces such an order on the vertices, i.e. the order of a vertex u is that of cT u. In other words, we 
can define a reverse search tree on P with root the vertex v that maximizes cT v over all the vertices 
of P , where c is the vector given to OPTP for initializing P . Technically, the genericity assumption on 
c can be avoided by sorting the vertices w.r.t. the lexicographical ordering of their coordinates.

Reverse search also needs an adjacency procedure which, given a vertex v and an integer j, returns 
the j-th adjacent vertex of v , as well as a local search procedure allowing us to move from any vertex to 
its optimal neighbor w.r.t. the objective function. Both procedures can be implemented by computing 
all the adjacent vertices of a given vertex of P as described above, and then returning the best (or 
the j-th) w.r.t. the ordering induced by c.

The above procedures can be used by a reverse search variant of Algorithm 1 that traverses (for-
ward and backward) the reverse search tree while keeping in memory only a constant number of 
P vertices and edges. On the contrary, both the original Algorithm 1 and the algorithm of Proposi-
tion 3 need to store all vertices of P whose number is exponential in d in the worst case. Note that 
any algorithm should use space at least O (d|D|) to store the input set of edge directions. The above 
discussion yields the following result (encoding length of P vertices comes from Lemma 1).

Corollary 6. Given OPTP and a superset of edge directions D, a variant of Algorithm 1 using reverse search 
runs in space O (4d2〈P 〉 + 〈D〉) (additional to the input) while keeping the same asymptotic time complexity.

4. Applications

This section studies the performance of Algorithm 1 in certain classes of polytopes where we do 
not assume that we know the set of edge directions a priori. To this end, we describe methods for 
pre-computing a (super)set of the edge directions.

We start by describing the computation of the set of edge-directions in arbitrary polytopes 
using the formulation of standard polytopes. Then we study two important classes of polytopes 
where the number of edge directions can be efficiently precomputed and thus provide new, to-
tal polynomial-time algorithms for their representation by an edge-skeleton. In particular, we study 
signed Minkowski sums, and resultant and secondary polytopes. We show that these polytopes are 
well-described and naturally defined by optimization oracles, which provide a compact representation.

4.1. Standard polytopes

First we discuss the performance of Algorithm 1 on general polytopes. Any convex polytope 
P = {x | Ax ≤ b} can be written as a linear projection of a polytope Q = {(x, y) | Ax + I y = b,

y ≥ 0}, where A ⊆ Rm×d and we introduce the slack variables y ∈ Rm and P = π(Q ), by the 
linear mapping π(x, y) = x. We can rewrite Q as the so-called standard polytope {x′ | Bx′ = b,

x′ ≥ 0}. The set E of edge directions of Q is covered by the set of circuits of B (cf. Lemma 2.13
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in Onn and Rothblum, 2004). Moreover, each edge direction of P is the projection of some direction 
in E under the mapping π (cf. Lemma 2.4 in Onn and Rothblum, 2004). However, the number of 
circuits of B will be exponential in d. On the other hand, for small dimensions Algorithm 1 could be 
an efficient choice for edge-skeleton computation or vertex enumeration.

4.2. Signed Minkowski sums

Recall that the Minkowski sum of (convex) polytopes A, B ⊆Rd is defined as

A + B := {a + b | a ∈ A,b ∈ B}.
Following Schneider (1993) the Minkowski subtraction is defined as

A − B := {x ∈Rd | B + x ⊆ A}.
Here we consider a special case of Minkowski subtraction where B is a summand of A. Equivalently, 
if A − B = C then A = B + C . A signed Minkowski sum combines Minkowski sums and subtractions, 
namely

P = s1 P1 + s2 P2 + · · · + sr Pr, si ∈ {−1,1},
where all Pi are convex polytopes and so is P .

We also define the sum (or subtraction) of two optimization oracles as the Minkowski sum (or sub-
traction) of the resulting vertices. In particular, if OPTP (c) = v and OPTP ′ (c′) = v ′ for v , v ′ vertices of 
P , P ′ respectively, then OPTP (c) +OPTP ′ (c) = v + v ′ and OPTP (c) −OPTP ′ (c) = v − v ′ . An optimization 
oracle for the signed Minkowski sum is given by the signed sum of the optimization oracles of the 
summands.

Lemma 7. If P1, . . . , Pr ⊂ Rd are given by optimization oracles, then we compute an optimization oracle for 
signed Minkowski sum P = ∑r

i=1 si P i in O (r).

Proof. Assume w.l.o.g. that s1 = · · · = sk = 1 �= sk+1 = · · · = sr = −1. Then, given P = ∑r
i=1 si P i and 

denoting P1 := ∑r
i=k+1 Pi and P2 := ∑k

i=1 Pi we have P + P1 = P2. It follows that OPTP+P1 (c) =
OPTP2 (c) for some vector c ∈Rd . Then OPTP (c) + OPTP1 (c) = OPTP2 (c) which follows from Minkowski 
sum properties. Therefore, we can compute OPTP (c) = ∑r

i=1 siOPTPi (c) with r oracle calls to OPTPi for 
i = 1, . . . , r. This yields a complexity of O (r) for OPTP since, by definition of oracle polynomial-time, 
the oracle calls in every summand are of unit cost. �
Example 1. Here we illustrate the above definitions and constructions as well as the standard reduc-
tions from (Grötschel et al., 1993). Consider the polytopes P1, P2, P3, their signed Minkowski sum 
P = P1 − P2 + P3, and its polar P∗ as shown in Fig. 1. Observe that P1 = P2 + S , where S is a square. 
Assume that P1, P2, P3 are given by OPTP1 , OPTP2 , OPTP3 oracles.

Then, OPTP (c) = OPTP1 (c) − OPTP2 (c) + OPTP3 (c) for some vector c ∈ Rd . If P satisfies the require-
ments of Proposition 2 then, having access to OPTP (c), we compute SEPP (p) in oracle polynomial-
time for point p ∈ Rd . In particular, asking if p ∈ P is equivalent to asking if H := {x | pT x ≤ 1} is 
a valid inequality for P∗ . The latter can be solved by computing the point cT in P∗ that maximizes 
the inner product with the outer normal vector of H and test if it validates H . If this happens then 
SEPP (p) returns that p ∈ P , otherwise it returns p /∈ P with separating hyperplane {x | cx = 1}.

Let n denote the number of vertices of P . An oracle for P is provided by Lemma 7. Then, the entire 
polytope can be reconstructed, and both V- and H-representations can be found by Proposition 8.

Proposition 8. (See Emiris et al., 2013.) Given OPTP for P ⊆ Rd, its V- and H-representations as well as a 
triangulation T of P can be computed in
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Fig. 1. Signed Minkowski sum oracles.

O (d5n|T |2) arithmetic operations, and O (n + f ) calls to OPTP ,

where n and f are the number of vertices and facets of P , respectively, and |T | the number of d-dimensional 
simplices of T .

Corollary 9. Given optimization oracles for P1, . . . , Pr ⊆ Rd, we construct the V- and H-representations, and 
a triangulation T of the signed Minkowski sum P = P1 + s2 P2 + · · · + sr Pr, si ∈ {−1, 1} in output sensitive 
complexity, namely O (d5n|T |2 + (n + f )r), where n, f are the number of vertices and facets in P and |T | the 
number of full-dimensional simplices of T .

In the above complexity the number of d-dimensional simplices of the computed triangulation 
T can be exponential in d which is essentially given by the Upper Bound Theorem for spheres, i.e. 
|T | = O (n(d+1)/2) (Stanley, 2004). This stresses the need for total polynomial-time algorithms for the 
edge-skeleton of P . Note that it is not assumed that the polytopes are well-described. But we assume 
the input contains a superset of all edges for each Pi . In one of the most important cases where 
we are given the vertices of all summands Pi , we can compute all edges in each Pi by solving a 
linear program for each pair of vertices. Each such pair defines a candidate edge. Hence, the overall 
computation of the edges of Pi ’s is polynomial.

Corollary 10. Given optimization oracles for well-described P1, . . . , Pr ⊆ Rd, and supersets of their edge 
directions D1, . . . , Dr , the edge-skeleton of the signed Minkowski sum P can be computed in oracle total 
polynomial-time by Algorithm 1.

Proof. To be able to apply Algorithm 1, first we should show that P is well-described. Let 〈Pmax〉
be the maximum encoding length of summands P1, . . . , Pr . Then by Lemma 1, the encoding length 
of the coordinates of summand vertices is 4d2〈Pmax〉. Thus, 4d2〈Pmax〉 + 〈r〉 is the encoding length 
of the coordinates of P vertices. Finally, 〈P 〉 = d + 12d4〈Pmax〉 + 3d2〈r〉 by Lemma 1. Now OPTP is 
computed by Lemma 7 in O (r). The superset of the edge directions of P is D = ⋃

si>0 Di , because 
D(P1 − P2) ⊂ D(P1) since P1 − P2 = P3 ⇔ P1 = P2 + P3. �

Our algorithm assumes that, in the Minkowski subtraction A − B , B is a summand of A and does 
not verify this assumption.
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4.3. Secondary and resultant polytopes

The secondary polytope 	 of a set of d points A = {p1, . . . , pd} ⊂ Zk is a fundamental object since 
it expresses the triangulations of conv(A) via a polytope representation. For any triangulation T of 
conv(A), define vector φT ∈ Rd with i-coordinate

φT (i) =
∑

σ∈T | pi∈vtx(σ )

vol(σ ), (1)

summing over all simplices σ of T having pi as a vertex, where vtx(σ ) is the vertex set of simplex σ , 
and i ∈ {1, . . . , d}. Now the secondary polytope 	(A), or just 	, is defined as the convex hull of φT

for all triangulations T . A famous theorem of Gelfand et al. (1994), which is also the central result 
in (De Loera et al., 2010), states that there is a bijection between the vertices of 	 and the regular 
triangulations of conv(A). This extends to a bijection between the face poset of 	 and the poset of 
regular subdivisions of conv(A). Moreover, 	, although in ambient space Rd , has actual dimension 
dim(	) = d − k − 1.

Let us now consider the Newton polytope of resultants, or resultant polytopes, for which optimiza-
tion oracles provide today the only plausible approach for their computation (Emiris et al., 2013).

Let us consider sets A0, . . . , Ak ⊂ Zk . In the algebraic setting, these are the supports of k + 1
polynomials in k variables. Let the Cayley set be defined by

A :=
k⋃

j=0

(A j × {e j}) ⊂ Z2k,

where e0, . . . , ek form an affine basis of Zk . Clearly, each point in A corresponds to a unique point 
in some Ai . The (regular) triangulations of A are in bijective correspondence with the (regular) fine 
mixed subdivisions of the Minkowski sum A0 + · · ·+ Ak (Gelfand et al., 1994). Mixed subdivisions are 
those where all cells are Minkowski sums of convex hulls of subsets of the Ai . A mixed subdivision is 
fine if, for every cell, the sum of its summands’ dimensions equals the dimension of the cell.

Let d := ∑k
j=0 |A j |, then given triangulation T of conv(A), define vector ρT ∈ Rd with i-coordinate

ρT (i) :=
∑

i-mixed σ∈T

vol(σ ), (2)

where i ∈ {1, . . . , d}. A simplex σ is called i-mixed if it contains pi ∈ A
 for some 
 ∈ {1, . . . , k} and 
exactly 2 points from each A j , where j ranges over {0, 1, . . . , k} − {
}. The resultant polytope R is 
defined as the convex hull of ρT for all triangulations T . Similarly with the secondary polytope, it 
is in ambient space Rd but has dimension dim(R) = d − 2k − 1 (Gelfand et al., 1994). There is a 
surjection, i.e. many to one relation, from the regular triangulations of conv(A) to the vertices of R .

Example 2. Let A0 = {{0}, {2}}, A1 = {{0}, {1}, {2}}, then the Cayley set will be A = {{0, 0}, {2, 0}, {0, 1},
{1, 1}, {2, 1}}. The 5 vertices of the secondary polytope 	(A) are computed using equation (1):

φ(T1) = (2,4,2,0,4),

φ(T2) = (4,2,4,0,2),

φ(T3) = (4,2,3,2,1),

φ(T4) = (3,3,1,4,1),

φ(T5) = (2,4,1,2,3),

and the 3 vertices of the resultant polytope N(R) are computed using equation (2):
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Fig. 2. Secondary and resultant polytopes.

ρ(T1) = (0,2,0,0,2),

ρ(T2) = (2,0,2,0,0),

ρ(T3) = (2,0,2,0,0),

ρ(T4) = (1,1,0,2,0),

ρ(T5) = (0,2,0,0,2).

Note that there are two pairs of triangulations that yield one resultant vertex each. Fig. 2 illustrates 
this example.

We consider k fixed because in practice it holds k � d � n, where n stands for the number of 
polytope vertices. Note that R is computed as a full-dimensional polytope in a space of its intrinsic 
dimension (Emiris et al., 2013) and this approach extends to 	.

Computing the V-representation of 	 and R by the algorithm in (Emiris et al., 2013) is not total 
polynomial. In fact, the complexity depends on the number of polytope vertices and facets, but also 
on the number of simplices in a triangulation of the polytope (see Proposition 8). However, we show 
that Algorithm 1 computes 	 and R in oracle total polynomial-time.

Lemma 11. Both 	 and R are well-described polytopes.

Proof. For the case of 	, given A ∈ Zk , let 〈A〉 be its encoding length and α := vol(conv(A)). It is clear 
that α = O (〈A〉k) and thus 〈α〉 = O (k〈A〉). For each triangulation T each coordinate of φT is upper 
bounded by α, since the sum of the volumes of its adjacent simplices cannot exceed vol(conv(A)). 
This bound is tight for the points a ∈ A of a regular triangulation T where the simplices containing a
partition conv(A). It follows that the encoding length of 	 vertices is 〈α〉 and thus 〈	〉 = 4n2〈α〉 +d =
O (dn2〈A〉) by Lemma 1. Similarly, we bound the encoding length of ρT which yields that R is also a 
well-described polytope. �

In the sequel, we characterize the set of edge directions of 	 and R . The edge directions of 
both 	, R can be computed by enumerating circuits of A. More specifically, circuit enumeration 
suffices to compute the edge vectors, i.e. both directions and lengths of the edges.

We first give some fundamental definitions from combinatorial geometry. For a detailed presenta-
tion we recommend (De Loera et al., 2010). A circuit C ⊆ A is a minimum affinely dependent subset 
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of A. It holds that conv(C) has exactly two triangulations C+ , C− . The operation of switching from 
one triangulation to another is called flip. Triangulation T of A, which equals C+ when restricted on 
circuit C , is supported on C if, by flipping C+ to C− , we obtain another triangulation T ′ of A. The 
dimension of a circuit is the dimension of its convex hull. If A is in generic position, then all circuits 
C are full dimensional. Then all the edges of 	 correspond to full dimensional circuits. If A is not in 
generic position, some edges may correspond to lower-dimensional circuits.

In the case of R , where A = ⋃k
j=0 A j , a circuit C is called cubical if and only if |C ∩ A j | ∈ {0, 2}, 

j = 0, . . . , k. If A is in generic position, all the edges of R correspond to full dimensional cubical cir-
cuits (Sturmfels, 1994).

Lemma 12. Given A ∈ Zk in generic position, we compute the set of edge directions of 	 in O (dk+2). Given 
A ∈ Z2k in generic position the set of edge directions of R is computed in O (d2k+2). In both cases, genericity of 
A is checked within the respective time complexity.

Proof. For 	, we enumerate all 
( |A|

k+2

)
circuits in O (dk+2), obtaining the set of all edge vectors. Gener-

icity of A is established by checking whether all 
(|A|

k

)
subsets, k ∈ {1, . . . , k + 1}, are independent. This 

is in O (dk+1) for k = O (1).
In the case of R , where A = ⋃k

j=0 A j , a flip on T is cubical if and only if it is supported on a cubical 
circuit C . In generic position, |C | = 2k + 2. For those supporting cubical flips, |C ∩ A j | = 2, j = 0, . . . , k. 
Every edge dC of R is supported on cubical flip C , where dC (a) equals ρC+ (a) −ρC− (a), if a ∈ C , and 0
otherwise (Sturmfels, 1994). Given A, all such circuits are enumerated in 

( |A|
2k+2

) = O (d2k+2); a better 
bound is O (t2k+2) if t bounds |A j|, j = 0, . . . , k. �
Lemma 13. (See Emiris et al., 2013.) For k + 1 pointsets in Zk of total cardinality d, optimization over R
takes polynomial-time, when k is fixed.

Corollary 14. In total polynomial-time, we compute the edge-skeleton of 	 ⊂ Rd, given A ∈ Zk in generic 
position, and the edge-skeleton of R, given A ∈Z2k in generic position.

Proof. Since by Lemma 11 	, R are well-bounded, optimization oracles are available by Lemma 13
and the set of edge directions by Lemma 12, the edge-skeletons of 	, R can be computed by Algo-
rithm 1 in oracle total polynomial-time. Moreover, since the optimization oracle is polynomial-time 
this yields a (proper) total polynomial-time algorithm for 	, R . �

Following Lemma 12, for 	, R we also obtain their edge lengths. This can lead to a more efficient 
edge-skeleton algorithm on the real RAM.

Remark 1. Our results readily extend to the Newton polytope of discriminants, or discriminant poly-
topes. This follows from the fact that these polytopes can be written as signed Minkowski sums of 
secondary polytopes (Gelfand et al., 1994).

5. Concluding remarks

We have presented the first total polynomial-time algorithm for computing the edge-skeleton of a 
polytope, given an optimization oracle, and a set of directions that contains the polytope’s edge direc-
tions. Our algorithm yields the first (weakly) total polynomial-time algorithms for the edge-skeleton 
(and vertex enumeration) of signed Minkowski sum, and resultant polytopes.

An open question is a strongly total polynomial-time algorithm for the edge-skeleton problem. 
Another is to solve the edge-skeleton problem without edge directions; characterizations of edge 
directions for polytopes in H-representation are studied in (Onn et al., 2005). It is also interesting 
to investigate new classes of convex combinatorial optimization problems where our algorithm runs 
in polynomial time.
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