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1 Introduction

This report is divided in three parts. In the first one there is a brief
introduction about Surface Meshing and 3D Periodic Delaunay Tri-
angulations. In the second part there are some notes about design
and implementation issues of the Periodic Surface Mesher for CGAL
[cga09]. Finally, in examples section there are some visualizations
of minimal triply periodic surfaces using Periodic Surface Mesher
in CGAL.

2 Preliminaries

2.1 The CGAL Surface Mesher

Assume a Delaunay triangulation dt and surface S in 3 dimensional
space.

Definition 2.1. Restricted Delaunay triangulation rdt w.r.t. dt and
S is a 2 dimensional complex c2t3 of facets of dt whose dual Voronoi
segments intersect S. These facets called boundary facets.

Definition 2.2. Surface Delaunay ball of a boundary facet f is the
ball with center an intersection of f with S circumscribing f .

Refinement Criteria.

• angular bound : lower bound to the minimum angle of any
boundary facet

• radius bound : upper bound to the radius of the surface De-
launay ball of any facet

• distance bound : upper bound to the distance between the cen-
ter of a boundary facet and the center of its surface Delaunay
ball

Definition 2.3. Bad facet is a boundary facet the does not meet the
refinement criteria.
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Figure 1: (α) 2d case: The blue edges are the boundary facets and
consist the Restricted Delaunay triangulation. The red edges are
the dual Voroinoi edges that intersect the surface S. (β) f is the
boundary facet of surface S, e the dual Voroinoi edge and c the
center of the Surface Delaunay ball.

The Algorithm. A initialization step inserts at least 3 points (20
points in the CGAL implementation) laying on the surface to the De-
launay triangulation. These points are constructed by ray shouting
from the origin point to a random point on the boundary sphere and
compute the intersection with the surface via a dichotomic search.

A refinement procedure refines the constructed restricted De-
launay triangulation w.r.t. the surface until it meets some crite-
ria. These criteria inserts the notion of bad facets of rdt. The algo-
rthm maintains a priority queue storing bad facets and a c2t3 data
structure storing the restricted to surface Delaunay triangulation.
In each step refines one bad facet by inserting in the triangulation
the center of its Delaunay surface ball which is the intersection of
the facet's dual Voronoi segment with the surface. It also updates
both the triangulation and the bad facets priority queue.

In [BO05] there is a detailed illustration of the theoretical aspects
of surface meshing and sampling in which the surface mesher al-
gorithm of CGAL is based.

2.2 The CGAL 3D Periodic Delaunay Triangulation

A 3D Periodic Delaunay Triangulation is a Delaunay Triangulation
computed in the periodic space T3

c := R3/Z3. We define as domain
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Figure 2: (α) the original domain and the way it stores the triangu-
lation (β) a cell crossing the domain and the offsets of the points (γ)
the 2 simplices' intersection is not a simplex (δ) 2 facets with the
same vertices but with different offsets

the cube that contains exactly one representative of each periodic
element. We compute our triangulations in original domain which
is the one that contains the origin point. Each point of the trian-
gulation is represented inside the main domain. For each point we
define an offset (ox, oy, oz). It determines the number of periods that
the point is far from the original domain. Edges and cells store their
points together with an offset for each point. An offset of a point v
contains the information about the domain that this point is with
respect to the other points of the edge or cell.

When computing in periodic space there might be point sets that
have not triangulation in T3

c (see figure 2(γʹ)).
A solution ( [CT09]) to this is either compute in 27-sheeted cov-

ering space which means that we dublicate our domain 26 times
or insert 36 dummy points at the beginning of the procedure. In
this project we choose the second solution. The reason is that the
insertion of the dummy points will not affect the result of the mesh
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because of the refinement steps (the facets that these points intro-
duce will be refined). Note that by inserting this points the property
of the surface meshing that all the points of the triangulation are
on the surface is not hold any more.

In [CT09] there is the theory of 3D Periodic Delaunay Triangula-
tions used to implement this software package.

3 Periodic Surface Mesher

The goal is to mesh triply periodic surfaces given their implicit func-
tions. We will use the surface mesher package of CGAL with the 3D
Periodic Delaunay Triangulations as template parameter.

Implementation issues. An new class Periodic_3_Delaunay_ tri-
angulation_3_Surface_mesher is contructed overloading methods
from Periodic_3_Delaunay_triangulation_3 class in order to make
Periodic triangualtions compatible to the surface mesher (e.g. di-
mension, is_infinite, dual) and also to provide new functionalities
needed for periodic meshing (e.g. insert, insert_in_hole, find_ con-
flicts). There are also some functions of visualization, that output
the triangulation to an .off or .mesh file. The meshing algorithm is
implemented using the design of mesher levels described in [RY07].
(Mesher_level.h: contains algorithms, Surface_mesher.h: contains
implementations of basic functions)

3.1 Modifications

3.1.1 Point insertion

A point insertion could happend either in the initialization step or
at the refinement step. There can be cases that the surface and
the boundary facet crosses the domain and the refinement point is
outside the domain. In these cases the algorithm should translate
these points inside the domain using offsets (see figure 3.1.1 (α)).

Implementation issues. For the initialization step we just over-
load insert method in order to translate points that are outside the
domain inside. For the refinement step we overload insert_in_hole,
find_ conflicts methods. For translation we use the canonicalize_point
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Figure 3: (α) translating a out-of-domain refinement point inside the
domain (β)-(δ) keep track of offsets during insertion

function. Note that this implementation is not so efficient because
we have to call canonicalize_point many times for the same points.

3.1.2 Star Approach

When the algorithm makes an insertion it uses the star approach,
so it makes a point location then find the conflicting cells, it makes
a hole removing them and finally it makes a star in the hole (see
figure 3.1.1 (β)-(δ)) creating new cells. When the cells are removed
the information of the offsets is also removed and when the new
cells are created the algorithm has to put some offsets to them. All
these are solved and implemented at the Periodic Triangulations
CGAL package but the surface mesher uses methods directly from
the original Triangulations classes. So we had to adjust some code
of the periodic triangulations to the methods the mesher uses for
point insertion.

Implementation issues. Here we have to overload insert_in_hole
and find_conflicts methods. The change is just a movement of the
clear offsets procedure from find_conflicts to insert_in_hole.
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Figure 4: The point v3 is outside the main domain and the geometric
computation with its representation inside the domain leads to false
results. One can see the two different triangles which correspont to
the points v1, v2, v3 with the two different translations of v3.

3.1.3 Refinement Criteria.

The problem with the mesh criteria is that they use geometric in-
formation, which in peoridic case can lead to computations of the
wrong geometric quantity. At each criterion there is a facet which
has to be checked whether it is bad w.r.t. some lower and upper
bounds given to the algorithm (see section 2.1). So each criterion
has to be adapted in order to compute the right geometric quantity.

Angular Bound - Aspect Ratio Criterion. In this case the prob-
lem is simple. If the facet we want to check is periodic, i.e. two
of its vertices points lay in a different domain, the computation of
the minimum angle can be false (see figure 4(αʹ) for an illustration).
This is because the facet is a combinatorial object and in the peri-
odic case represents more than one triangle, which is a geometric
object. The solution is to translate the points to their periodic coor-
dinates using their offsets stored in the cell. With this translation
we construct the right triangle and as a result we take the right
angles and edge lenghts.

Edge Length Criterion. The case is similar to the angular bound
case because both angles and edges should depend on the triangles.
See figure 4(βʹ) for an illustration. This criterion is not used by the
algorithm.
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Radius Bound - Uniform Size Criterion. In this criterion the al-
gorithm calculates the dual Voronoi edge of the checking facet and
computes an intersection point s of this edge with the surface. This
criterion computes the distance af any point of the facet with s in
order to find the radius of the surface Delaunay ball of the facet.
The dual edge can be periodic so the potential problem arising is
that the intersection point s is translated differently than the point
v.

One case is when the dual segment is completely outside the
domain (see figure 5(αʹ)) and the facet is crossing it. In this case
the dual segment is represented totally inside the domain so the
computation of the distance of s to any vertex of the facet can be
different than the real distance. But if the facet is included in only
2 periodic domains we can be sure that at least one of its vertices v3

is translated inside the domain. So the distance of s with v3 is real
one which force us to take as criterion the min{(s, v1), (s, v2), (s, v3)}.

Anot case is the opposite; if the facet is completely inside the
domain (see figure 5(βʹ)) and the dual edge is crossing it. In this
case the facet is represented totally inside the domain but the dual
segment is represented at the edge of the domain. If s is outside
the domain we translate it to s∗. So the new criterion is min{(s, v1),
(s, v2), (s, v3), (s

∗, v1)}. Note that we don't handle the case when s is in-
side the domain, because both facet and s will be inside the domain.
When all the points are inside the domain we can't distinguish be-
tween a configuration which gives the right criteria and the one that
does not. So a solution to that could be to pass to the criteria more
information, for example the points of the dual edge.

Implementation issues. We use two new classes Periodic_criteria
with the implementation of the criteria defined above and also Sur-
face_mesh_periodic_criteria_3 which is the same as the original Sur-
face_mesh_criteria_3 instead of loading our new periodic criteria.

Distance Bound - Curvature Size Criterion. The distance bound
criterion is similar to the radius bound criterion and we use the
same ideas and solutions. The new criterion here is min{(s, c), (s, c∗),
(s∗, c)} (see figure 3.1.3).
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Figure 5: Radius Bound
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Figure 6: Distance Bound

4 Examples

In this section there are presented some examples of the use of
periodic surface mesher with some known triple periodic minimal
surfaces found on [DH]. The visualization was made using the mesh
visualization software: medit [Fre01]. We also present some bad ex-
amples. Finally we visualize our results by exporting the domain
of the surface 8 times constructing a cube of edge 2 emphasizing
on the periodicity of these surfaces and on the event that they can
actually be ``glued'' together (see figures at the end of this report).
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cylinder x2 + y2 = 0
diamond sinx · siny · sinz

+ sinx · cosy · cosz
+ cosx · siny · cosz
+ cosx · cosy · sinz = 0

double p 0.5 · (cosx · cosy + cosy · cosz + cosz · cosx)
+ 0.2 · (cos2x + cos2y + cos2z)

D prime 1 · (sinx · siny · sinz)
+ 1 · (cosx · cosy · cosz)
− 1 · (cos2x · cos2y + cos2y · cos2z + cos2z · cos2x))
− 0.4

G prime 5 · (sin2x · sinz · cosy + sin2y · sinx · cosz + sin2z · siny · cosx)
+ 1 · (cos2x · cos2y + cos2y · cos2z + cos2z · cos2x)

gyroid cosx · siny + cosy · sinz + cosz · sinx
lidinoid 1 · (sin2x · sinz · cosy + sin2y · sinx · cosz + sin2z · siny · cosx)

− 1 · (cos2x · cos2y + cos2y · cos2z + cos2z · cos2x)
+ 0.3

schwarz p: cosx + cosy + cosz
split p 1.1 · (sin2x · sinz · cosy + sin2y · sinx · cosz + sin2z · siny · cosx)

− 0.2 · (cos2x · cos2y + cos2y · cos2z + cos2z · cos2x)
− 0.4 · (cosx + cosy + cosz)

Table 1: List of surfaces
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Figure 7: Periodic Minimal Surfaces: criteria: angular = 30 radius =
0.1 distance = 0.1
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Figure 8: Periodic Minimal Surfaces: criteria: angular = 30 radius =
0.05 distance = 0.05
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Figure 9: Periodic Minimal Surfaces: criteria: angular = 30 radius =
0.01 distance = 0.01
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(αʹ) (βʹ)

Figure 10: Bad examples: schwarz p surface shifted

5 Conclusion - Future Work

To conclude with, the algorithm terminates for all of the above sur-
faces so the state that in practice it can mesh many periodic min-
imal surfaces. This is a first result. On a second phase we have to
construct new criteria and prove that the algorithm's termination
and correctness. Note that it is sufficient to prove that the new cri-
teria handle all the possible cases because this criteria uses the
original criteria of the surface mesher which have a proven termi-
nation and correctness [BO05].
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Figure 11: Periodic Minimal Surfaces (8-sheet): criteria: angular = 30
radius = 0.1 distance = 0.1
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Figure 12: Periodic Minimal Surfaces (8-sheet): criteria: angular = 30
radius = 0.05 distance = 0.05
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Figure 13: Periodic Minimal Surfaces (8-sheet): criteria: angular = 30
radius = 0.01 distance = 0.01
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